Properties

Label 6-693e3-1.1-c1e3-0-0
Degree $6$
Conductor $332812557$
Sign $1$
Analytic cond. $169.445$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·7-s − 8-s − 3·11-s + 12·19-s + 6·23-s − 12·29-s − 6·31-s − 6·41-s + 6·43-s + 24·47-s + 6·49-s + 3·56-s + 24·59-s + 18·61-s − 7·64-s + 12·67-s − 12·71-s + 24·73-s + 9·77-s + 12·79-s + 18·83-s + 3·88-s − 18·89-s + 24·97-s + 12·101-s + 12·107-s − 12·109-s + ⋯
L(s)  = 1  − 1.13·7-s − 0.353·8-s − 0.904·11-s + 2.75·19-s + 1.25·23-s − 2.22·29-s − 1.07·31-s − 0.937·41-s + 0.914·43-s + 3.50·47-s + 6/7·49-s + 0.400·56-s + 3.12·59-s + 2.30·61-s − 7/8·64-s + 1.46·67-s − 1.42·71-s + 2.80·73-s + 1.02·77-s + 1.35·79-s + 1.97·83-s + 0.319·88-s − 1.90·89-s + 2.43·97-s + 1.19·101-s + 1.16·107-s − 1.14·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 7^{3} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 7^{3} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{6} \cdot 7^{3} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(169.445\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 3^{6} \cdot 7^{3} \cdot 11^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.066356348\)
\(L(\frac12)\) \(\approx\) \(2.066356348\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_1$ \( ( 1 + T )^{3} \)
11$C_1$ \( ( 1 + T )^{3} \)
good2$D_{6}$ \( 1 + T^{3} + p^{3} T^{6} \)
5$D_{6}$ \( 1 - 2 T^{3} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 + 24 T^{2} + 2 T^{3} + 24 p T^{4} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 + 27 T^{2} - 8 T^{3} + 27 p T^{4} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 - 12 T + 84 T^{2} - 420 T^{3} + 84 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 - 6 T + 57 T^{2} - 244 T^{3} + 57 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 + 12 T + 120 T^{2} + 702 T^{3} + 120 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 + 6 T + 57 T^{2} + 404 T^{3} + 57 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 + 36 T^{2} - 246 T^{3} + 36 p T^{4} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 + 6 T + 51 T^{2} + 460 T^{3} + 51 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 - 6 T + 117 T^{2} - 468 T^{3} + 117 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 - 24 T + 312 T^{2} - 2584 T^{3} + 312 p T^{4} - 24 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 + 111 T^{2} + 120 T^{3} + 111 p T^{4} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 24 T + 264 T^{2} - 2116 T^{3} + 264 p T^{4} - 24 p^{2} T^{5} + p^{3} T^{6} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{3} \)
67$S_4\times C_2$ \( 1 - 12 T + 228 T^{2} - 1604 T^{3} + 228 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 + 12 T + 165 T^{2} + 1320 T^{3} + 165 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 - 24 T + 396 T^{2} - 3898 T^{3} + 396 p T^{4} - 24 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 - 12 T + 189 T^{2} - 1640 T^{3} + 189 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 - 18 T + 309 T^{2} - 3036 T^{3} + 309 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 18 T + 183 T^{2} + 1308 T^{3} + 183 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 - 24 T + 435 T^{2} - 4664 T^{3} + 435 p T^{4} - 24 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.350735673943346928605407243924, −9.009891951703012985039789877855, −8.791199579904368345814017220001, −8.751931211758680633962335380238, −8.016988979946331964722263858808, −7.79978326617433976009661469734, −7.29271467714987259448403057269, −7.27945009656910062558633431494, −7.26462857320688202185871362338, −6.61026356290737500466431849547, −6.42103710521066609766729256108, −5.80565782620660755873390959829, −5.57451343138068983183318816028, −5.30898096073083919843041334668, −5.30200701719432773777941487258, −4.84980053666902816021388289595, −4.06983760073111197019964568070, −3.76758633823650279172768131407, −3.50835113085756827866004396710, −3.32704169591219710646693010646, −2.71824404546642850855812380802, −2.29477518003028835573674020964, −2.07452474876015681857580409472, −0.849121879007399067292849754039, −0.74665830070033025775674089900, 0.74665830070033025775674089900, 0.849121879007399067292849754039, 2.07452474876015681857580409472, 2.29477518003028835573674020964, 2.71824404546642850855812380802, 3.32704169591219710646693010646, 3.50835113085756827866004396710, 3.76758633823650279172768131407, 4.06983760073111197019964568070, 4.84980053666902816021388289595, 5.30200701719432773777941487258, 5.30898096073083919843041334668, 5.57451343138068983183318816028, 5.80565782620660755873390959829, 6.42103710521066609766729256108, 6.61026356290737500466431849547, 7.26462857320688202185871362338, 7.27945009656910062558633431494, 7.29271467714987259448403057269, 7.79978326617433976009661469734, 8.016988979946331964722263858808, 8.751931211758680633962335380238, 8.791199579904368345814017220001, 9.009891951703012985039789877855, 9.350735673943346928605407243924

Graph of the $Z$-function along the critical line