L(s) = 1 | − 3·7-s − 8-s − 3·11-s + 12·19-s + 6·23-s − 12·29-s − 6·31-s − 6·41-s + 6·43-s + 24·47-s + 6·49-s + 3·56-s + 24·59-s + 18·61-s − 7·64-s + 12·67-s − 12·71-s + 24·73-s + 9·77-s + 12·79-s + 18·83-s + 3·88-s − 18·89-s + 24·97-s + 12·101-s + 12·107-s − 12·109-s + ⋯ |
L(s) = 1 | − 1.13·7-s − 0.353·8-s − 0.904·11-s + 2.75·19-s + 1.25·23-s − 2.22·29-s − 1.07·31-s − 0.937·41-s + 0.914·43-s + 3.50·47-s + 6/7·49-s + 0.400·56-s + 3.12·59-s + 2.30·61-s − 7/8·64-s + 1.46·67-s − 1.42·71-s + 2.80·73-s + 1.02·77-s + 1.35·79-s + 1.97·83-s + 0.319·88-s − 1.90·89-s + 2.43·97-s + 1.19·101-s + 1.16·107-s − 1.14·109-s + ⋯ |
Λ(s)=(=((36⋅73⋅113)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((36⋅73⋅113)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
36⋅73⋅113
|
Sign: |
1
|
Analytic conductor: |
169.445 |
Root analytic conductor: |
2.35236 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 36⋅73⋅113, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.066356348 |
L(21) |
≈ |
2.066356348 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | C1 | (1+T)3 |
| 11 | C1 | (1+T)3 |
good | 2 | D6 | 1+T3+p3T6 |
| 5 | D6 | 1−2T3+p3T6 |
| 13 | S4×C2 | 1+24T2+2T3+24pT4+p3T6 |
| 17 | S4×C2 | 1+27T2−8T3+27pT4+p3T6 |
| 19 | S4×C2 | 1−12T+84T2−420T3+84pT4−12p2T5+p3T6 |
| 23 | S4×C2 | 1−6T+57T2−244T3+57pT4−6p2T5+p3T6 |
| 29 | S4×C2 | 1+12T+120T2+702T3+120pT4+12p2T5+p3T6 |
| 31 | S4×C2 | 1+6T+57T2+404T3+57pT4+6p2T5+p3T6 |
| 37 | S4×C2 | 1+36T2−246T3+36pT4+p3T6 |
| 41 | S4×C2 | 1+6T+51T2+460T3+51pT4+6p2T5+p3T6 |
| 43 | S4×C2 | 1−6T+117T2−468T3+117pT4−6p2T5+p3T6 |
| 47 | S4×C2 | 1−24T+312T2−2584T3+312pT4−24p2T5+p3T6 |
| 53 | S4×C2 | 1+111T2+120T3+111pT4+p3T6 |
| 59 | S4×C2 | 1−24T+264T2−2116T3+264pT4−24p2T5+p3T6 |
| 61 | C2 | (1−6T+pT2)3 |
| 67 | S4×C2 | 1−12T+228T2−1604T3+228pT4−12p2T5+p3T6 |
| 71 | S4×C2 | 1+12T+165T2+1320T3+165pT4+12p2T5+p3T6 |
| 73 | S4×C2 | 1−24T+396T2−3898T3+396pT4−24p2T5+p3T6 |
| 79 | S4×C2 | 1−12T+189T2−1640T3+189pT4−12p2T5+p3T6 |
| 83 | S4×C2 | 1−18T+309T2−3036T3+309pT4−18p2T5+p3T6 |
| 89 | S4×C2 | 1+18T+183T2+1308T3+183pT4+18p2T5+p3T6 |
| 97 | S4×C2 | 1−24T+435T2−4664T3+435pT4−24p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.350735673943346928605407243924, −9.009891951703012985039789877855, −8.791199579904368345814017220001, −8.751931211758680633962335380238, −8.016988979946331964722263858808, −7.79978326617433976009661469734, −7.29271467714987259448403057269, −7.27945009656910062558633431494, −7.26462857320688202185871362338, −6.61026356290737500466431849547, −6.42103710521066609766729256108, −5.80565782620660755873390959829, −5.57451343138068983183318816028, −5.30898096073083919843041334668, −5.30200701719432773777941487258, −4.84980053666902816021388289595, −4.06983760073111197019964568070, −3.76758633823650279172768131407, −3.50835113085756827866004396710, −3.32704169591219710646693010646, −2.71824404546642850855812380802, −2.29477518003028835573674020964, −2.07452474876015681857580409472, −0.849121879007399067292849754039, −0.74665830070033025775674089900,
0.74665830070033025775674089900, 0.849121879007399067292849754039, 2.07452474876015681857580409472, 2.29477518003028835573674020964, 2.71824404546642850855812380802, 3.32704169591219710646693010646, 3.50835113085756827866004396710, 3.76758633823650279172768131407, 4.06983760073111197019964568070, 4.84980053666902816021388289595, 5.30200701719432773777941487258, 5.30898096073083919843041334668, 5.57451343138068983183318816028, 5.80565782620660755873390959829, 6.42103710521066609766729256108, 6.61026356290737500466431849547, 7.26462857320688202185871362338, 7.27945009656910062558633431494, 7.29271467714987259448403057269, 7.79978326617433976009661469734, 8.016988979946331964722263858808, 8.751931211758680633962335380238, 8.791199579904368345814017220001, 9.009891951703012985039789877855, 9.350735673943346928605407243924