L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (−2.82 − 2.82i)5-s + (−1.76 − 1.76i)7-s + (0.707 − 0.707i)8-s + 4.00i·10-s + (4.00 − 4.00i)11-s + (−1.89 + 3.06i)13-s + 2.50i·14-s − 1.00·16-s − 3.07·17-s + (1.61 − 1.61i)19-s + (2.82 − 2.82i)20-s − 5.66·22-s − 2.77·23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (−1.26 − 1.26i)5-s + (−0.668 − 0.668i)7-s + (0.250 − 0.250i)8-s + 1.26i·10-s + (1.20 − 1.20i)11-s + (−0.525 + 0.850i)13-s + 0.668i·14-s − 0.250·16-s − 0.745·17-s + (0.370 − 0.370i)19-s + (0.632 − 0.632i)20-s − 1.20·22-s − 0.577·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.502 - 0.864i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.502 - 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0978031 + 0.169919i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0978031 + 0.169919i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (1.89 - 3.06i)T \) |
good | 5 | \( 1 + (2.82 + 2.82i)T + 5iT^{2} \) |
| 7 | \( 1 + (1.76 + 1.76i)T + 7iT^{2} \) |
| 11 | \( 1 + (-4.00 + 4.00i)T - 11iT^{2} \) |
| 17 | \( 1 + 3.07T + 17T^{2} \) |
| 19 | \( 1 + (-1.61 + 1.61i)T - 19iT^{2} \) |
| 23 | \( 1 + 2.77T + 23T^{2} \) |
| 29 | \( 1 - 9.35iT - 29T^{2} \) |
| 31 | \( 1 + (2.23 - 2.23i)T - 31iT^{2} \) |
| 37 | \( 1 + (-1.94 - 1.94i)T + 37iT^{2} \) |
| 41 | \( 1 + (7.64 + 7.64i)T + 41iT^{2} \) |
| 43 | \( 1 + 1.66iT - 43T^{2} \) |
| 47 | \( 1 + (6.59 - 6.59i)T - 47iT^{2} \) |
| 53 | \( 1 + 7.68iT - 53T^{2} \) |
| 59 | \( 1 + (1.49 - 1.49i)T - 59iT^{2} \) |
| 61 | \( 1 - 3.78T + 61T^{2} \) |
| 67 | \( 1 + (8.71 - 8.71i)T - 67iT^{2} \) |
| 71 | \( 1 + (-6.55 - 6.55i)T + 71iT^{2} \) |
| 73 | \( 1 + (2.06 + 2.06i)T + 73iT^{2} \) |
| 79 | \( 1 - 9.13T + 79T^{2} \) |
| 83 | \( 1 + (1.85 + 1.85i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2.39 + 2.39i)T - 89iT^{2} \) |
| 97 | \( 1 + (-10.2 + 10.2i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.690577596451242638996642761426, −8.850150190213647504218177707954, −8.554935924922601860924566030066, −7.32059879411748289618568378971, −6.63383832807257239687484566367, −5.01094687290851250288514020672, −4.00124877996291415384977729725, −3.42448839956512083417775433650, −1.35238195687995065442121327365, −0.12925260469411471110938494911,
2.32990198605598681149527381062, 3.53650556789905484899314303776, 4.55198800771072693455772127990, 6.11875318073892218035247709985, 6.71201658688016944650794513085, 7.54934666256036501874876106147, 8.171826013437739651219618168773, 9.467177612129241889532128682391, 9.933574368788880183851722863684, 10.95346666665418299704759581986