L(s) = 1 | − 0.732i·7-s + 2i·11-s + 3.46·13-s − 3.46i·17-s − 0.535i·19-s + 6.19i·23-s − 6.92i·29-s + 5.46·31-s − 2·37-s − 1.46·41-s − 5.26·43-s + 3.26i·47-s + 6.46·49-s + 11.4·53-s − 7.46i·59-s + ⋯ |
L(s) = 1 | − 0.276i·7-s + 0.603i·11-s + 0.960·13-s − 0.840i·17-s − 0.122i·19-s + 1.29i·23-s − 1.28i·29-s + 0.981·31-s − 0.328·37-s − 0.228·41-s − 0.803·43-s + 0.476i·47-s + 0.923·49-s + 1.57·53-s − 0.971i·59-s + ⋯ |
Λ(s)=(=(7200s/2ΓC(s)L(s)(0.979+0.200i)Λ(2−s)
Λ(s)=(=(7200s/2ΓC(s+1/2)L(s)(0.979+0.200i)Λ(1−s)
Degree: |
2 |
Conductor: |
7200
= 25⋅32⋅52
|
Sign: |
0.979+0.200i
|
Analytic conductor: |
57.4922 |
Root analytic conductor: |
7.58236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ7200(2449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 7200, ( :1/2), 0.979+0.200i)
|
Particular Values
L(1) |
≈ |
2.084265264 |
L(21) |
≈ |
2.084265264 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+0.732iT−7T2 |
| 11 | 1−2iT−11T2 |
| 13 | 1−3.46T+13T2 |
| 17 | 1+3.46iT−17T2 |
| 19 | 1+0.535iT−19T2 |
| 23 | 1−6.19iT−23T2 |
| 29 | 1+6.92iT−29T2 |
| 31 | 1−5.46T+31T2 |
| 37 | 1+2T+37T2 |
| 41 | 1+1.46T+41T2 |
| 43 | 1+5.26T+43T2 |
| 47 | 1−3.26iT−47T2 |
| 53 | 1−11.4T+53T2 |
| 59 | 1+7.46iT−59T2 |
| 61 | 1−8.92iT−61T2 |
| 67 | 1+10.7T+67T2 |
| 71 | 1−5.46T+71T2 |
| 73 | 1+7.46iT−73T2 |
| 79 | 1+1.07T+79T2 |
| 83 | 1+1.26T+83T2 |
| 89 | 1−8.92T+89T2 |
| 97 | 1+14.3iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.78175824333411479741029275567, −7.28620291448221916503027154258, −6.52385434199599860394205420664, −5.83161830256803883609997193149, −5.05800875851543668427791665991, −4.28865933989080338133087181301, −3.59054252411118747913977732990, −2.70279185310123182703114814394, −1.72617063808679140399505043829, −0.71234773353581599026575818348,
0.789410375204736223278888177690, 1.78852375659628581147237991058, 2.81129965797299131306630869356, 3.57865029997606879931589363229, 4.29611518287951733345620207672, 5.20958251584781267163873218890, 5.90933823841472878331716956310, 6.49246977513353498071985751252, 7.14560743085105503330310366002, 8.220533277638198936551303026750