L(s) = 1 | − 0.732i·7-s + 2i·11-s + 3.46·13-s − 3.46i·17-s − 0.535i·19-s + 6.19i·23-s − 6.92i·29-s + 5.46·31-s − 2·37-s − 1.46·41-s − 5.26·43-s + 3.26i·47-s + 6.46·49-s + 11.4·53-s − 7.46i·59-s + ⋯ |
L(s) = 1 | − 0.276i·7-s + 0.603i·11-s + 0.960·13-s − 0.840i·17-s − 0.122i·19-s + 1.29i·23-s − 1.28i·29-s + 0.981·31-s − 0.328·37-s − 0.228·41-s − 0.803·43-s + 0.476i·47-s + 0.923·49-s + 1.57·53-s − 0.971i·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.200i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 + 0.200i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.084265264\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.084265264\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 0.732iT - 7T^{2} \) |
| 11 | \( 1 - 2iT - 11T^{2} \) |
| 13 | \( 1 - 3.46T + 13T^{2} \) |
| 17 | \( 1 + 3.46iT - 17T^{2} \) |
| 19 | \( 1 + 0.535iT - 19T^{2} \) |
| 23 | \( 1 - 6.19iT - 23T^{2} \) |
| 29 | \( 1 + 6.92iT - 29T^{2} \) |
| 31 | \( 1 - 5.46T + 31T^{2} \) |
| 37 | \( 1 + 2T + 37T^{2} \) |
| 41 | \( 1 + 1.46T + 41T^{2} \) |
| 43 | \( 1 + 5.26T + 43T^{2} \) |
| 47 | \( 1 - 3.26iT - 47T^{2} \) |
| 53 | \( 1 - 11.4T + 53T^{2} \) |
| 59 | \( 1 + 7.46iT - 59T^{2} \) |
| 61 | \( 1 - 8.92iT - 61T^{2} \) |
| 67 | \( 1 + 10.7T + 67T^{2} \) |
| 71 | \( 1 - 5.46T + 71T^{2} \) |
| 73 | \( 1 + 7.46iT - 73T^{2} \) |
| 79 | \( 1 + 1.07T + 79T^{2} \) |
| 83 | \( 1 + 1.26T + 83T^{2} \) |
| 89 | \( 1 - 8.92T + 89T^{2} \) |
| 97 | \( 1 + 14.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.78175824333411479741029275567, −7.28620291448221916503027154258, −6.52385434199599860394205420664, −5.83161830256803883609997193149, −5.05800875851543668427791665991, −4.28865933989080338133087181301, −3.59054252411118747913977732990, −2.70279185310123182703114814394, −1.72617063808679140399505043829, −0.71234773353581599026575818348,
0.789410375204736223278888177690, 1.78852375659628581147237991058, 2.81129965797299131306630869356, 3.57865029997606879931589363229, 4.29611518287951733345620207672, 5.20958251584781267163873218890, 5.90933823841472878331716956310, 6.49246977513353498071985751252, 7.14560743085105503330310366002, 8.220533277638198936551303026750