Properties

Label 2-7200-40.29-c1-0-48
Degree $2$
Conductor $7200$
Sign $0.979 + 0.200i$
Analytic cond. $57.4922$
Root an. cond. $7.58236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.732i·7-s + 2i·11-s + 3.46·13-s − 3.46i·17-s − 0.535i·19-s + 6.19i·23-s − 6.92i·29-s + 5.46·31-s − 2·37-s − 1.46·41-s − 5.26·43-s + 3.26i·47-s + 6.46·49-s + 11.4·53-s − 7.46i·59-s + ⋯
L(s)  = 1  − 0.276i·7-s + 0.603i·11-s + 0.960·13-s − 0.840i·17-s − 0.122i·19-s + 1.29i·23-s − 1.28i·29-s + 0.981·31-s − 0.328·37-s − 0.228·41-s − 0.803·43-s + 0.476i·47-s + 0.923·49-s + 1.57·53-s − 0.971i·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.200i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 + 0.200i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7200\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.979 + 0.200i$
Analytic conductor: \(57.4922\)
Root analytic conductor: \(7.58236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7200} (2449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7200,\ (\ :1/2),\ 0.979 + 0.200i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.084265264\)
\(L(\frac12)\) \(\approx\) \(2.084265264\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 0.732iT - 7T^{2} \)
11 \( 1 - 2iT - 11T^{2} \)
13 \( 1 - 3.46T + 13T^{2} \)
17 \( 1 + 3.46iT - 17T^{2} \)
19 \( 1 + 0.535iT - 19T^{2} \)
23 \( 1 - 6.19iT - 23T^{2} \)
29 \( 1 + 6.92iT - 29T^{2} \)
31 \( 1 - 5.46T + 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + 1.46T + 41T^{2} \)
43 \( 1 + 5.26T + 43T^{2} \)
47 \( 1 - 3.26iT - 47T^{2} \)
53 \( 1 - 11.4T + 53T^{2} \)
59 \( 1 + 7.46iT - 59T^{2} \)
61 \( 1 - 8.92iT - 61T^{2} \)
67 \( 1 + 10.7T + 67T^{2} \)
71 \( 1 - 5.46T + 71T^{2} \)
73 \( 1 + 7.46iT - 73T^{2} \)
79 \( 1 + 1.07T + 79T^{2} \)
83 \( 1 + 1.26T + 83T^{2} \)
89 \( 1 - 8.92T + 89T^{2} \)
97 \( 1 + 14.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78175824333411479741029275567, −7.28620291448221916503027154258, −6.52385434199599860394205420664, −5.83161830256803883609997193149, −5.05800875851543668427791665991, −4.28865933989080338133087181301, −3.59054252411118747913977732990, −2.70279185310123182703114814394, −1.72617063808679140399505043829, −0.71234773353581599026575818348, 0.789410375204736223278888177690, 1.78852375659628581147237991058, 2.81129965797299131306630869356, 3.57865029997606879931589363229, 4.29611518287951733345620207672, 5.20958251584781267163873218890, 5.90933823841472878331716956310, 6.49246977513353498071985751252, 7.14560743085105503330310366002, 8.220533277638198936551303026750

Graph of the $Z$-function along the critical line