L(s) = 1 | + 1.15·2-s + 2.05·3-s − 0.677·4-s + 2.36·6-s − 0.375·7-s − 3.07·8-s + 1.22·9-s − 0.0553·11-s − 1.39·12-s − 0.388·13-s − 0.431·14-s − 2.18·16-s + 1.40·18-s + 1.76·19-s − 0.771·21-s − 0.0636·22-s + 1.02·23-s − 6.32·24-s − 0.446·26-s − 3.64·27-s + 0.254·28-s + 8.45·29-s − 6.05·31-s + 3.64·32-s − 0.113·33-s − 0.829·36-s − 9.49·37-s + ⋯ |
L(s) = 1 | + 0.813·2-s + 1.18·3-s − 0.338·4-s + 0.965·6-s − 0.141·7-s − 1.08·8-s + 0.408·9-s − 0.0166·11-s − 0.401·12-s − 0.107·13-s − 0.115·14-s − 0.546·16-s + 0.332·18-s + 0.405·19-s − 0.168·21-s − 0.0135·22-s + 0.214·23-s − 1.29·24-s − 0.0876·26-s − 0.702·27-s + 0.0480·28-s + 1.56·29-s − 1.08·31-s + 0.643·32-s − 0.0198·33-s − 0.138·36-s − 1.56·37-s + ⋯ |
Λ(s)=(=(7225s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7225s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1 |
good | 2 | 1−1.15T+2T2 |
| 3 | 1−2.05T+3T2 |
| 7 | 1+0.375T+7T2 |
| 11 | 1+0.0553T+11T2 |
| 13 | 1+0.388T+13T2 |
| 19 | 1−1.76T+19T2 |
| 23 | 1−1.02T+23T2 |
| 29 | 1−8.45T+29T2 |
| 31 | 1+6.05T+31T2 |
| 37 | 1+9.49T+37T2 |
| 41 | 1+7.67T+41T2 |
| 43 | 1+6.75T+43T2 |
| 47 | 1−1.84T+47T2 |
| 53 | 1+9.09T+53T2 |
| 59 | 1−13.5T+59T2 |
| 61 | 1+5.81T+61T2 |
| 67 | 1+14.4T+67T2 |
| 71 | 1+1.12T+71T2 |
| 73 | 1+2.19T+73T2 |
| 79 | 1−3.94T+79T2 |
| 83 | 1−9.44T+83T2 |
| 89 | 1−2.61T+89T2 |
| 97 | 1+5.25T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.63884075259623633446756059232, −6.84229509382842268278412562757, −6.12160096022818653281178002360, −5.19225434719845765737270667836, −4.75390344054882532421949774437, −3.69319483653592712303226492912, −3.32716756996508499802703298758, −2.63074677926050812618688573133, −1.58470737411709746085684425796, 0,
1.58470737411709746085684425796, 2.63074677926050812618688573133, 3.32716756996508499802703298758, 3.69319483653592712303226492912, 4.75390344054882532421949774437, 5.19225434719845765737270667836, 6.12160096022818653281178002360, 6.84229509382842268278412562757, 7.63884075259623633446756059232