Properties

Label 2-7400-1.1-c1-0-89
Degree $2$
Conductor $7400$
Sign $1$
Analytic cond. $59.0892$
Root an. cond. $7.68695$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.27·3-s + 0.447·7-s + 7.69·9-s − 2.50·11-s − 3.23·13-s + 6.79·17-s − 6.54·19-s + 1.46·21-s + 7.94·23-s + 15.3·27-s + 6.66·29-s + 3.96·31-s − 8.18·33-s + 37-s − 10.5·39-s + 5.66·41-s − 5.28·43-s + 7.75·47-s − 6.79·49-s + 22.2·51-s + 4.46·53-s − 21.4·57-s + 9.32·59-s − 12.2·61-s + 3.44·63-s + 1.82·67-s + 25.9·69-s + ⋯
L(s)  = 1  + 1.88·3-s + 0.169·7-s + 2.56·9-s − 0.754·11-s − 0.896·13-s + 1.64·17-s − 1.50·19-s + 0.319·21-s + 1.65·23-s + 2.95·27-s + 1.23·29-s + 0.711·31-s − 1.42·33-s + 0.164·37-s − 1.69·39-s + 0.884·41-s − 0.805·43-s + 1.13·47-s − 0.971·49-s + 3.11·51-s + 0.613·53-s − 2.83·57-s + 1.21·59-s − 1.57·61-s + 0.434·63-s + 0.222·67-s + 3.12·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7400\)    =    \(2^{3} \cdot 5^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(59.0892\)
Root analytic conductor: \(7.68695\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.587740189\)
\(L(\frac12)\) \(\approx\) \(4.587740189\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
37 \( 1 - T \)
good3 \( 1 - 3.27T + 3T^{2} \)
7 \( 1 - 0.447T + 7T^{2} \)
11 \( 1 + 2.50T + 11T^{2} \)
13 \( 1 + 3.23T + 13T^{2} \)
17 \( 1 - 6.79T + 17T^{2} \)
19 \( 1 + 6.54T + 19T^{2} \)
23 \( 1 - 7.94T + 23T^{2} \)
29 \( 1 - 6.66T + 29T^{2} \)
31 \( 1 - 3.96T + 31T^{2} \)
41 \( 1 - 5.66T + 41T^{2} \)
43 \( 1 + 5.28T + 43T^{2} \)
47 \( 1 - 7.75T + 47T^{2} \)
53 \( 1 - 4.46T + 53T^{2} \)
59 \( 1 - 9.32T + 59T^{2} \)
61 \( 1 + 12.2T + 61T^{2} \)
67 \( 1 - 1.82T + 67T^{2} \)
71 \( 1 + 4.54T + 71T^{2} \)
73 \( 1 + 13.6T + 73T^{2} \)
79 \( 1 + 1.04T + 79T^{2} \)
83 \( 1 + 8.59T + 83T^{2} \)
89 \( 1 + 12.3T + 89T^{2} \)
97 \( 1 - 3.34T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.044506079235692527048631655202, −7.35041764518115123248936761450, −6.91656389008049595352959990643, −5.77944304712094876676754490218, −4.73956642852383867110524656694, −4.34232655924232755951551152009, −3.15944039825729413298451347197, −2.86756513196427945019633809359, −2.06967643671791084909932689054, −1.02409608096304957163464513922, 1.02409608096304957163464513922, 2.06967643671791084909932689054, 2.86756513196427945019633809359, 3.15944039825729413298451347197, 4.34232655924232755951551152009, 4.73956642852383867110524656694, 5.77944304712094876676754490218, 6.91656389008049595352959990643, 7.35041764518115123248936761450, 8.044506079235692527048631655202

Graph of the $Z$-function along the critical line