L(s) = 1 | + 3.27·3-s + 0.447·7-s + 7.69·9-s − 2.50·11-s − 3.23·13-s + 6.79·17-s − 6.54·19-s + 1.46·21-s + 7.94·23-s + 15.3·27-s + 6.66·29-s + 3.96·31-s − 8.18·33-s + 37-s − 10.5·39-s + 5.66·41-s − 5.28·43-s + 7.75·47-s − 6.79·49-s + 22.2·51-s + 4.46·53-s − 21.4·57-s + 9.32·59-s − 12.2·61-s + 3.44·63-s + 1.82·67-s + 25.9·69-s + ⋯ |
L(s) = 1 | + 1.88·3-s + 0.169·7-s + 2.56·9-s − 0.754·11-s − 0.896·13-s + 1.64·17-s − 1.50·19-s + 0.319·21-s + 1.65·23-s + 2.95·27-s + 1.23·29-s + 0.711·31-s − 1.42·33-s + 0.164·37-s − 1.69·39-s + 0.884·41-s − 0.805·43-s + 1.13·47-s − 0.971·49-s + 3.11·51-s + 0.613·53-s − 2.83·57-s + 1.21·59-s − 1.57·61-s + 0.434·63-s + 0.222·67-s + 3.12·69-s + ⋯ |
Λ(s)=(=(7400s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7400s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.587740189 |
L(21) |
≈ |
4.587740189 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 37 | 1−T |
good | 3 | 1−3.27T+3T2 |
| 7 | 1−0.447T+7T2 |
| 11 | 1+2.50T+11T2 |
| 13 | 1+3.23T+13T2 |
| 17 | 1−6.79T+17T2 |
| 19 | 1+6.54T+19T2 |
| 23 | 1−7.94T+23T2 |
| 29 | 1−6.66T+29T2 |
| 31 | 1−3.96T+31T2 |
| 41 | 1−5.66T+41T2 |
| 43 | 1+5.28T+43T2 |
| 47 | 1−7.75T+47T2 |
| 53 | 1−4.46T+53T2 |
| 59 | 1−9.32T+59T2 |
| 61 | 1+12.2T+61T2 |
| 67 | 1−1.82T+67T2 |
| 71 | 1+4.54T+71T2 |
| 73 | 1+13.6T+73T2 |
| 79 | 1+1.04T+79T2 |
| 83 | 1+8.59T+83T2 |
| 89 | 1+12.3T+89T2 |
| 97 | 1−3.34T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.044506079235692527048631655202, −7.35041764518115123248936761450, −6.91656389008049595352959990643, −5.77944304712094876676754490218, −4.73956642852383867110524656694, −4.34232655924232755951551152009, −3.15944039825729413298451347197, −2.86756513196427945019633809359, −2.06967643671791084909932689054, −1.02409608096304957163464513922,
1.02409608096304957163464513922, 2.06967643671791084909932689054, 2.86756513196427945019633809359, 3.15944039825729413298451347197, 4.34232655924232755951551152009, 4.73956642852383867110524656694, 5.77944304712094876676754490218, 6.91656389008049595352959990643, 7.35041764518115123248936761450, 8.044506079235692527048631655202