Properties

Label 2-75-5.4-c11-0-14
Degree $2$
Conductor $75$
Sign $-0.894 - 0.447i$
Analytic cond. $57.6257$
Root an. cond. $7.59116$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14.7i·2-s + 243i·3-s + 1.83e3·4-s − 3.57e3·6-s + 7.99e4i·7-s + 5.71e4i·8-s − 5.90e4·9-s + 8.05e5·11-s + 4.45e5i·12-s + 1.19e6i·13-s − 1.17e6·14-s + 2.91e6·16-s + 2.63e6i·17-s − 8.69e5i·18-s − 1.16e7·19-s + ⋯
L(s)  = 1  + 0.325i·2-s + 0.577i·3-s + 0.894·4-s − 0.187·6-s + 1.79i·7-s + 0.616i·8-s − 0.333·9-s + 1.50·11-s + 0.516i·12-s + 0.894i·13-s − 0.584·14-s + 0.693·16-s + 0.449i·17-s − 0.108i·18-s − 1.07·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(57.6257\)
Root analytic conductor: \(7.59116\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{75} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :11/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(6)\) \(\approx\) \(0.644961 + 2.73209i\)
\(L(\frac12)\) \(\approx\) \(0.644961 + 2.73209i\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 243iT \)
5 \( 1 \)
good2 \( 1 - 14.7iT - 2.04e3T^{2} \)
7 \( 1 - 7.99e4iT - 1.97e9T^{2} \)
11 \( 1 - 8.05e5T + 2.85e11T^{2} \)
13 \( 1 - 1.19e6iT - 1.79e12T^{2} \)
17 \( 1 - 2.63e6iT - 3.42e13T^{2} \)
19 \( 1 + 1.16e7T + 1.16e14T^{2} \)
23 \( 1 + 1.84e7iT - 9.52e14T^{2} \)
29 \( 1 - 1.90e8T + 1.22e16T^{2} \)
31 \( 1 - 1.01e8T + 2.54e16T^{2} \)
37 \( 1 - 8.06e7iT - 1.77e17T^{2} \)
41 \( 1 - 2.26e8T + 5.50e17T^{2} \)
43 \( 1 + 1.67e9iT - 9.29e17T^{2} \)
47 \( 1 - 8.58e8iT - 2.47e18T^{2} \)
53 \( 1 - 3.52e9iT - 9.26e18T^{2} \)
59 \( 1 + 4.35e9T + 3.01e19T^{2} \)
61 \( 1 + 1.65e9T + 4.35e19T^{2} \)
67 \( 1 - 7.58e9iT - 1.22e20T^{2} \)
71 \( 1 + 2.75e10T + 2.31e20T^{2} \)
73 \( 1 + 3.22e10iT - 3.13e20T^{2} \)
79 \( 1 - 2.43e9T + 7.47e20T^{2} \)
83 \( 1 + 1.20e10iT - 1.28e21T^{2} \)
89 \( 1 + 4.44e9T + 2.77e21T^{2} \)
97 \( 1 + 2.04e10iT - 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.15632360225356901347155497868, −11.88389547973878138300597455132, −10.59765786081382904105356263800, −9.119545913405678128879446174817, −8.472232878309564065507304342459, −6.57994418812998748581155659262, −5.98415105949353363813956820952, −4.44194641141565809357522013916, −2.79236759944644210807983095685, −1.72991967101191072134478993511, 0.71366662398528229604792584127, 1.43033110611313781459876979066, 3.06182276315773274114416984147, 4.25094889481221188561230933559, 6.35360366903336033817774698864, 7.01138350820244042453617161598, 8.087035350159907845264294793394, 9.876258310944939222798095132109, 10.80589513851885289584057563158, 11.71639781602705563631795451860

Graph of the $Z$-function along the critical line