Properties

Label 2-87e2-1.1-c1-0-112
Degree $2$
Conductor $7569$
Sign $1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.46·2-s + 0.157·4-s + 3.40·5-s − 1.63·7-s + 2.70·8-s − 4.99·10-s + 4.80·11-s + 2.73·13-s + 2.40·14-s − 4.29·16-s − 7.37·17-s + 5.92·19-s + 0.536·20-s − 7.05·22-s − 5.55·23-s + 6.56·25-s − 4.01·26-s − 0.257·28-s + 1.77·31-s + 0.889·32-s + 10.8·34-s − 5.55·35-s − 2.62·37-s − 8.69·38-s + 9.20·40-s + 0.781·41-s + 1.63·43-s + ⋯
L(s)  = 1  − 1.03·2-s + 0.0788·4-s + 1.52·5-s − 0.617·7-s + 0.956·8-s − 1.57·10-s + 1.44·11-s + 0.757·13-s + 0.641·14-s − 1.07·16-s − 1.78·17-s + 1.35·19-s + 0.119·20-s − 1.50·22-s − 1.15·23-s + 1.31·25-s − 0.787·26-s − 0.0486·28-s + 0.318·31-s + 0.157·32-s + 1.85·34-s − 0.939·35-s − 0.430·37-s − 1.41·38-s + 1.45·40-s + 0.121·41-s + 0.248·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.511934610\)
\(L(\frac12)\) \(\approx\) \(1.511934610\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 + 1.46T + 2T^{2} \)
5 \( 1 - 3.40T + 5T^{2} \)
7 \( 1 + 1.63T + 7T^{2} \)
11 \( 1 - 4.80T + 11T^{2} \)
13 \( 1 - 2.73T + 13T^{2} \)
17 \( 1 + 7.37T + 17T^{2} \)
19 \( 1 - 5.92T + 19T^{2} \)
23 \( 1 + 5.55T + 23T^{2} \)
31 \( 1 - 1.77T + 31T^{2} \)
37 \( 1 + 2.62T + 37T^{2} \)
41 \( 1 - 0.781T + 41T^{2} \)
43 \( 1 - 1.63T + 43T^{2} \)
47 \( 1 + 2.40T + 47T^{2} \)
53 \( 1 - 3.67T + 53T^{2} \)
59 \( 1 - 2.63T + 59T^{2} \)
61 \( 1 - 13.4T + 61T^{2} \)
67 \( 1 + 5.47T + 67T^{2} \)
71 \( 1 - 2.63T + 71T^{2} \)
73 \( 1 - 11.3T + 73T^{2} \)
79 \( 1 - 12.0T + 79T^{2} \)
83 \( 1 + 12.8T + 83T^{2} \)
89 \( 1 - 14.7T + 89T^{2} \)
97 \( 1 - 3.96T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.144540473739539137299364172525, −7.05328965743134709108026842733, −6.56510479639613762161303750800, −6.05874531705621761961821736704, −5.19622547368799808669423895633, −4.27473632845879469897304329357, −3.52457684342147602197913162898, −2.26550939929632383332612723620, −1.64944754312659044851959156745, −0.76371125816242132536997948749, 0.76371125816242132536997948749, 1.64944754312659044851959156745, 2.26550939929632383332612723620, 3.52457684342147602197913162898, 4.27473632845879469897304329357, 5.19622547368799808669423895633, 6.05874531705621761961821736704, 6.56510479639613762161303750800, 7.05328965743134709108026842733, 8.144540473739539137299364172525

Graph of the $Z$-function along the critical line