L(s) = 1 | + (1.29 − 0.576i)2-s + (0.715 − 0.715i)3-s + (1.33 − 1.48i)4-s + (−0.867 − 0.867i)5-s + (0.511 − 1.33i)6-s + (0.867 − 2.69i)8-s + 1.97i·9-s + (−1.62 − 0.620i)10-s + (−2.97 − 2.97i)11-s + (−0.109 − 2.02i)12-s + (2.02 − 2.02i)13-s − 1.24·15-s + (−0.430 − 3.97i)16-s − 0.264·17-s + (1.13 + 2.55i)18-s + (4.53 − 4.53i)19-s + ⋯ |
L(s) = 1 | + (0.913 − 0.407i)2-s + (0.412 − 0.412i)3-s + (0.667 − 0.744i)4-s + (−0.388 − 0.388i)5-s + (0.208 − 0.545i)6-s + (0.306 − 0.951i)8-s + 0.658i·9-s + (−0.512 − 0.196i)10-s + (−0.897 − 0.897i)11-s + (−0.0314 − 0.583i)12-s + (0.560 − 0.560i)13-s − 0.320·15-s + (−0.107 − 0.994i)16-s − 0.0641·17-s + (0.268 + 0.601i)18-s + (1.04 − 1.04i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.281 + 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.281 + 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.64950 - 2.20176i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.64950 - 2.20176i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.29 + 0.576i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.715 + 0.715i)T - 3iT^{2} \) |
| 5 | \( 1 + (0.867 + 0.867i)T + 5iT^{2} \) |
| 11 | \( 1 + (2.97 + 2.97i)T + 11iT^{2} \) |
| 13 | \( 1 + (-2.02 + 2.02i)T - 13iT^{2} \) |
| 17 | \( 1 + 0.264T + 17T^{2} \) |
| 19 | \( 1 + (-4.53 + 4.53i)T - 19iT^{2} \) |
| 23 | \( 1 - 1.54iT - 23T^{2} \) |
| 29 | \( 1 + (0.328 - 0.328i)T - 29iT^{2} \) |
| 31 | \( 1 + 6.04T + 31T^{2} \) |
| 37 | \( 1 + (-6.64 - 6.64i)T + 37iT^{2} \) |
| 41 | \( 1 - 11.0iT - 41T^{2} \) |
| 43 | \( 1 + (-3.38 - 3.38i)T + 43iT^{2} \) |
| 47 | \( 1 + 3.12T + 47T^{2} \) |
| 53 | \( 1 + (-0.430 - 0.430i)T + 53iT^{2} \) |
| 59 | \( 1 + (-4.62 - 4.62i)T + 59iT^{2} \) |
| 61 | \( 1 + (4.86 - 4.86i)T - 61iT^{2} \) |
| 67 | \( 1 + (-3.34 + 3.34i)T - 67iT^{2} \) |
| 71 | \( 1 - 9.03iT - 71T^{2} \) |
| 73 | \( 1 + 14.8iT - 73T^{2} \) |
| 79 | \( 1 - 12.5T + 79T^{2} \) |
| 83 | \( 1 + (-0.715 + 0.715i)T - 83iT^{2} \) |
| 89 | \( 1 - 10.9iT - 89T^{2} \) |
| 97 | \( 1 - 14.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32389934964899345110487617512, −9.205192741017804485085028198065, −8.088996872321787864948241073850, −7.59560487954385763668296233105, −6.36479273392860806429608133703, −5.37713787151725996468794017306, −4.66549334272813125359157882240, −3.31048523031782415418093182010, −2.59077102078301249532613849489, −1.03772484785817523874299042843,
2.17166827901120509499756931725, 3.45570688750590340611159246979, 3.97098000723446281397920249155, 5.14556478496955645786350836133, 6.06293934109629357930022979361, 7.17077439801816304923955166525, 7.66625868639836817960371754982, 8.765562118085852703245389460662, 9.670413935785727264359341988885, 10.67754552079877398316049458891