L(s) = 1 | + (−1.33 − 0.467i)2-s + (2.13 + 2.13i)3-s + (1.56 + 1.24i)4-s + (−0.545 + 0.545i)5-s + (−1.85 − 3.84i)6-s + (−1.50 − 2.39i)8-s + 6.10i·9-s + (0.983 − 0.473i)10-s + (−0.910 + 0.910i)11-s + (0.670 + 5.99i)12-s + (0.919 + 0.919i)13-s − 2.32·15-s + (0.883 + 3.90i)16-s − 7.91·17-s + (2.85 − 8.15i)18-s + (−1.30 − 1.30i)19-s + ⋯ |
L(s) = 1 | + (−0.943 − 0.330i)2-s + (1.23 + 1.23i)3-s + (0.781 + 0.624i)4-s + (−0.244 + 0.244i)5-s + (−0.755 − 1.57i)6-s + (−0.530 − 0.847i)8-s + 2.03i·9-s + (0.311 − 0.149i)10-s + (−0.274 + 0.274i)11-s + (0.193 + 1.73i)12-s + (0.254 + 0.254i)13-s − 0.601·15-s + (0.220 + 0.975i)16-s − 1.91·17-s + (0.673 − 1.92i)18-s + (−0.299 − 0.299i)19-s + ⋯ |
Λ(s)=(=(784s/2ΓC(s)L(s)(−0.577−0.816i)Λ(2−s)
Λ(s)=(=(784s/2ΓC(s+1/2)L(s)(−0.577−0.816i)Λ(1−s)
Degree: |
2 |
Conductor: |
784
= 24⋅72
|
Sign: |
−0.577−0.816i
|
Analytic conductor: |
6.26027 |
Root analytic conductor: |
2.50205 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ784(589,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 784, ( :1/2), −0.577−0.816i)
|
Particular Values
L(1) |
≈ |
0.550700+1.06370i |
L(21) |
≈ |
0.550700+1.06370i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.33+0.467i)T |
| 7 | 1 |
good | 3 | 1+(−2.13−2.13i)T+3iT2 |
| 5 | 1+(0.545−0.545i)T−5iT2 |
| 11 | 1+(0.910−0.910i)T−11iT2 |
| 13 | 1+(−0.919−0.919i)T+13iT2 |
| 17 | 1+7.91T+17T2 |
| 19 | 1+(1.30+1.30i)T+19iT2 |
| 23 | 1−3.84iT−23T2 |
| 29 | 1+(−5.25−5.25i)T+29iT2 |
| 31 | 1−4.89T+31T2 |
| 37 | 1+(−0.938+0.938i)T−37iT2 |
| 41 | 1+2.84iT−41T2 |
| 43 | 1+(−0.585+0.585i)T−43iT2 |
| 47 | 1+5.72T+47T2 |
| 53 | 1+(−6.96+6.96i)T−53iT2 |
| 59 | 1+(6.54−6.54i)T−59iT2 |
| 61 | 1+(−4.67−4.67i)T+61iT2 |
| 67 | 1+(4.35+4.35i)T+67iT2 |
| 71 | 1+1.99iT−71T2 |
| 73 | 1+7.72iT−73T2 |
| 79 | 1−9.26T+79T2 |
| 83 | 1+(−4.78−4.78i)T+83iT2 |
| 89 | 1−2.12iT−89T2 |
| 97 | 1−9.01T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.50775713261980698334753984917, −9.579067401116819627816904221423, −8.952083629133234518320718231133, −8.445031605354869598420004466894, −7.48293026265162347004076660278, −6.58199212977413954051131288259, −4.84056940552821318722982230212, −3.90265564132377356151532708550, −2.99379502581139051210507512252, −2.05605993736963304022880806319,
0.67258259938576826624874843171, 2.09802203029153356298591793645, 2.83200063952163528762097457172, 4.46789171899606956580474149554, 6.26389508735393068404164603804, 6.63538840990902271206206686424, 7.70861766300730112049528980492, 8.448746249280383512217780492058, 8.613279289711821579454008689942, 9.702286283817213184353900262205