L(s) = 1 | + (−1.33 − 0.467i)2-s + (2.13 + 2.13i)3-s + (1.56 + 1.24i)4-s + (−0.545 + 0.545i)5-s + (−1.85 − 3.84i)6-s + (−1.50 − 2.39i)8-s + 6.10i·9-s + (0.983 − 0.473i)10-s + (−0.910 + 0.910i)11-s + (0.670 + 5.99i)12-s + (0.919 + 0.919i)13-s − 2.32·15-s + (0.883 + 3.90i)16-s − 7.91·17-s + (2.85 − 8.15i)18-s + (−1.30 − 1.30i)19-s + ⋯ |
L(s) = 1 | + (−0.943 − 0.330i)2-s + (1.23 + 1.23i)3-s + (0.781 + 0.624i)4-s + (−0.244 + 0.244i)5-s + (−0.755 − 1.57i)6-s + (−0.530 − 0.847i)8-s + 2.03i·9-s + (0.311 − 0.149i)10-s + (−0.274 + 0.274i)11-s + (0.193 + 1.73i)12-s + (0.254 + 0.254i)13-s − 0.601·15-s + (0.220 + 0.975i)16-s − 1.91·17-s + (0.673 − 1.92i)18-s + (−0.299 − 0.299i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.550700 + 1.06370i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.550700 + 1.06370i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.33 + 0.467i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-2.13 - 2.13i)T + 3iT^{2} \) |
| 5 | \( 1 + (0.545 - 0.545i)T - 5iT^{2} \) |
| 11 | \( 1 + (0.910 - 0.910i)T - 11iT^{2} \) |
| 13 | \( 1 + (-0.919 - 0.919i)T + 13iT^{2} \) |
| 17 | \( 1 + 7.91T + 17T^{2} \) |
| 19 | \( 1 + (1.30 + 1.30i)T + 19iT^{2} \) |
| 23 | \( 1 - 3.84iT - 23T^{2} \) |
| 29 | \( 1 + (-5.25 - 5.25i)T + 29iT^{2} \) |
| 31 | \( 1 - 4.89T + 31T^{2} \) |
| 37 | \( 1 + (-0.938 + 0.938i)T - 37iT^{2} \) |
| 41 | \( 1 + 2.84iT - 41T^{2} \) |
| 43 | \( 1 + (-0.585 + 0.585i)T - 43iT^{2} \) |
| 47 | \( 1 + 5.72T + 47T^{2} \) |
| 53 | \( 1 + (-6.96 + 6.96i)T - 53iT^{2} \) |
| 59 | \( 1 + (6.54 - 6.54i)T - 59iT^{2} \) |
| 61 | \( 1 + (-4.67 - 4.67i)T + 61iT^{2} \) |
| 67 | \( 1 + (4.35 + 4.35i)T + 67iT^{2} \) |
| 71 | \( 1 + 1.99iT - 71T^{2} \) |
| 73 | \( 1 + 7.72iT - 73T^{2} \) |
| 79 | \( 1 - 9.26T + 79T^{2} \) |
| 83 | \( 1 + (-4.78 - 4.78i)T + 83iT^{2} \) |
| 89 | \( 1 - 2.12iT - 89T^{2} \) |
| 97 | \( 1 - 9.01T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50775713261980698334753984917, −9.579067401116819627816904221423, −8.952083629133234518320718231133, −8.445031605354869598420004466894, −7.48293026265162347004076660278, −6.58199212977413954051131288259, −4.84056940552821318722982230212, −3.90265564132377356151532708550, −2.99379502581139051210507512252, −2.05605993736963304022880806319,
0.67258259938576826624874843171, 2.09802203029153356298591793645, 2.83200063952163528762097457172, 4.46789171899606956580474149554, 6.26389508735393068404164603804, 6.63538840990902271206206686424, 7.70861766300730112049528980492, 8.448746249280383512217780492058, 8.613279289711821579454008689942, 9.702286283817213184353900262205