Properties

Label 8-28e8-1.1-c1e4-0-17
Degree $8$
Conductor $377801998336$
Sign $1$
Analytic cond. $1535.93$
Root an. cond. $2.50205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·3-s + 2·4-s + 6·5-s − 8·6-s − 4·8-s + 11·9-s − 12·10-s + 8·11-s + 8·12-s − 8·13-s + 24·15-s + 8·16-s + 6·17-s − 22·18-s + 8·19-s + 12·20-s − 16·22-s − 12·23-s − 16·24-s + 27·25-s + 16·26-s + 20·27-s − 8·29-s − 48·30-s + 4·31-s − 8·32-s + ⋯
L(s)  = 1  − 1.41·2-s + 2.30·3-s + 4-s + 2.68·5-s − 3.26·6-s − 1.41·8-s + 11/3·9-s − 3.79·10-s + 2.41·11-s + 2.30·12-s − 2.21·13-s + 6.19·15-s + 2·16-s + 1.45·17-s − 5.18·18-s + 1.83·19-s + 2.68·20-s − 3.41·22-s − 2.50·23-s − 3.26·24-s + 27/5·25-s + 3.13·26-s + 3.84·27-s − 1.48·29-s − 8.76·30-s + 0.718·31-s − 1.41·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(1535.93\)
Root analytic conductor: \(2.50205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(9.410327763\)
\(L(\frac12)\) \(\approx\) \(9.410327763\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + p T + p T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
7 \( 1 \)
good3$D_4\times C_2$ \( 1 - 4 T + 5 T^{2} + 4 T^{3} - 20 T^{4} + 4 p T^{5} + 5 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
5$C_2$$\times$$C_2^2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 2 T - T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
11$D_4\times C_2$ \( 1 - 8 T + 41 T^{2} - 152 T^{3} + 532 T^{4} - 152 p T^{5} + 41 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 120 T^{3} + 446 T^{4} + 120 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 6 T + 5 T^{2} + 18 T^{3} + 60 T^{4} + 18 p T^{5} + 5 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 - 8 T + 41 T^{2} - 168 T^{3} + 644 T^{4} - 168 p T^{5} + 41 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 + 12 T + 105 T^{2} + 684 T^{3} + 3824 T^{4} + 684 p T^{5} + 105 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 248 T^{3} + 1918 T^{4} + 248 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 4 T - 47 T^{2} - 4 T^{3} + 2512 T^{4} - 4 p T^{5} - 47 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2$$\times$$C_2^2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 2 T - 33 T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
41$D_4\times C_2$ \( 1 - 60 T^{2} + 3494 T^{4} - 60 p^{2} T^{6} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} - 444 T^{3} + 2702 T^{4} - 444 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 12 T + 17 T^{2} - 396 T^{3} + 7152 T^{4} - 396 p T^{5} + 17 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 2 T + 101 T^{2} + 226 T^{3} + 4912 T^{4} + 226 p T^{5} + 101 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 + 28 T + 365 T^{2} + 3028 T^{3} + 22252 T^{4} + 3028 p T^{5} + 365 p^{2} T^{6} + 28 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 14 T + 53 T^{2} + 606 T^{3} - 9088 T^{4} + 606 p T^{5} + 53 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 + 12 T + 45 T^{2} - 972 T^{3} - 11812 T^{4} - 972 p T^{5} + 45 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 228 T^{2} + 22310 T^{4} - 228 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 18 T + 277 T^{2} - 3042 T^{3} + 31116 T^{4} - 3042 p T^{5} + 277 p^{2} T^{6} - 18 p^{3} T^{7} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 - 16 T + 109 T^{2} + 176 T^{3} - 4856 T^{4} + 176 p T^{5} + 109 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 + 20 T + 200 T^{2} + 2180 T^{3} + 23086 T^{4} + 2180 p T^{5} + 200 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 9 T + 116 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 8 T + 162 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60898878754437264014159096880, −7.17885156374054541170796249287, −7.09650943760235910372527641220, −7.02305985859651419583805421228, −6.33602219830750707540536529737, −6.23357749547065714080937179082, −6.07789714706169639787911760611, −6.01696952301148763267579316068, −5.67457745809841939320222931246, −5.34602459493885227089863889648, −5.14612745677162014922467178533, −4.69365711174394830383176276688, −4.33690393102488350416328051477, −4.22402176016667495552435324982, −3.89204355563626706256641861058, −3.47388350998889436386185165551, −3.30812201542658934109753896121, −2.87820135743805597379527799709, −2.62761389072671296559661208128, −2.45812917961110656926034285831, −2.13811252350927101375421630830, −1.95947157386748524725362093811, −1.32674550436089727126058050581, −1.14801447569952847446289982447, −0.978271154293716595598603291334, 0.978271154293716595598603291334, 1.14801447569952847446289982447, 1.32674550436089727126058050581, 1.95947157386748524725362093811, 2.13811252350927101375421630830, 2.45812917961110656926034285831, 2.62761389072671296559661208128, 2.87820135743805597379527799709, 3.30812201542658934109753896121, 3.47388350998889436386185165551, 3.89204355563626706256641861058, 4.22402176016667495552435324982, 4.33690393102488350416328051477, 4.69365711174394830383176276688, 5.14612745677162014922467178533, 5.34602459493885227089863889648, 5.67457745809841939320222931246, 6.01696952301148763267579316068, 6.07789714706169639787911760611, 6.23357749547065714080937179082, 6.33602219830750707540536529737, 7.02305985859651419583805421228, 7.09650943760235910372527641220, 7.17885156374054541170796249287, 7.60898878754437264014159096880

Graph of the $Z$-function along the critical line