L(s) = 1 | + 2·9-s + 8·11-s + 16·19-s + 4·29-s − 8·31-s − 20·41-s + 10·49-s + 4·61-s + 24·71-s − 16·79-s − 5·81-s + 12·89-s + 16·99-s + 28·101-s + 28·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 32·171-s + ⋯ |
L(s) = 1 | + 2/3·9-s + 2.41·11-s + 3.67·19-s + 0.742·29-s − 1.43·31-s − 3.12·41-s + 10/7·49-s + 0.512·61-s + 2.84·71-s − 1.80·79-s − 5/9·81-s + 1.27·89-s + 1.60·99-s + 2.78·101-s + 2.68·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 2.44·171-s + ⋯ |
Λ(s)=(=(640000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(640000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
640000
= 210⋅54
|
Sign: |
1
|
Analytic conductor: |
40.8069 |
Root analytic conductor: |
2.52745 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 640000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.972109543 |
L(21) |
≈ |
2.972109543 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1−2T2+p2T4 |
| 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1−4T+pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1−8T+pT2)2 |
| 23 | C22 | 1−10T2+p2T4 |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1+10T+pT2)2 |
| 43 | C22 | 1−82T2+p2T4 |
| 47 | C22 | 1−90T2+p2T4 |
| 53 | C22 | 1−102T2+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C22 | 1−98T2+p2T4 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C22 | 1−46T2+p2T4 |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C22 | 1−66T2+p2T4 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C22 | 1−94T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.07504478878799993589527893617, −10.07494148824040044632683123428, −9.754399181016294135641612742267, −9.147593313744008898440551813804, −8.879208929021368555566973043790, −8.589731752532433791165519710500, −7.69092572792073251787856259954, −7.44420438790112111466250655457, −7.02180447652963304443323578739, −6.71305447448958984361620162138, −6.15556154248036396710764626554, −5.61394579599834384622783529656, −4.96530917422889623830417257180, −4.86898791580292905415471260025, −3.74305977784943563899566738819, −3.67468791370936355590713059598, −3.28131717218369490551418823091, −2.21195462598258886970323004006, −1.30114715274294811059575399550, −1.11332336049578327972894929450,
1.11332336049578327972894929450, 1.30114715274294811059575399550, 2.21195462598258886970323004006, 3.28131717218369490551418823091, 3.67468791370936355590713059598, 3.74305977784943563899566738819, 4.86898791580292905415471260025, 4.96530917422889623830417257180, 5.61394579599834384622783529656, 6.15556154248036396710764626554, 6.71305447448958984361620162138, 7.02180447652963304443323578739, 7.44420438790112111466250655457, 7.69092572792073251787856259954, 8.589731752532433791165519710500, 8.879208929021368555566973043790, 9.147593313744008898440551813804, 9.754399181016294135641612742267, 10.07494148824040044632683123428, 10.07504478878799993589527893617