L(s) = 1 | + 11.5i·3-s − 231.·7-s + 108.·9-s + 559. i·11-s − 107. i·13-s + 441.·17-s + 1.87e3i·19-s − 2.68e3i·21-s − 3.83e3·23-s + 4.07e3i·27-s + 3.36e3i·29-s + 7.95e3·31-s − 6.48e3·33-s + 1.06e4i·37-s + 1.25e3·39-s + ⋯ |
L(s) = 1 | + 0.743i·3-s − 1.78·7-s + 0.446·9-s + 1.39i·11-s − 0.177i·13-s + 0.370·17-s + 1.19i·19-s − 1.32i·21-s − 1.51·23-s + 1.07i·27-s + 0.744i·29-s + 1.48·31-s − 1.03·33-s + 1.28i·37-s + 0.131·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(−0.451+0.892i)Λ(6−s)
Λ(s)=(=(800s/2ΓC(s+5/2)L(s)(−0.451+0.892i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
−0.451+0.892i
|
Analytic conductor: |
128.307 |
Root analytic conductor: |
11.3272 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(401,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :5/2), −0.451+0.892i)
|
Particular Values
L(3) |
≈ |
0.5464277134 |
L(21) |
≈ |
0.5464277134 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−11.5iT−243T2 |
| 7 | 1+231.T+1.68e4T2 |
| 11 | 1−559.iT−1.61e5T2 |
| 13 | 1+107.iT−3.71e5T2 |
| 17 | 1−441.T+1.41e6T2 |
| 19 | 1−1.87e3iT−2.47e6T2 |
| 23 | 1+3.83e3T+6.43e6T2 |
| 29 | 1−3.36e3iT−2.05e7T2 |
| 31 | 1−7.95e3T+2.86e7T2 |
| 37 | 1−1.06e4iT−6.93e7T2 |
| 41 | 1+9.96e3T+1.15e8T2 |
| 43 | 1−925.iT−1.47e8T2 |
| 47 | 1−8.06e3T+2.29e8T2 |
| 53 | 1−7.95e3iT−4.18e8T2 |
| 59 | 1+1.68e4iT−7.14e8T2 |
| 61 | 1−1.12e4iT−8.44e8T2 |
| 67 | 1−3.36e4iT−1.35e9T2 |
| 71 | 1−8.86e3T+1.80e9T2 |
| 73 | 1+5.55e4T+2.07e9T2 |
| 79 | 1+6.94e4T+3.07e9T2 |
| 83 | 1+1.02e4iT−3.93e9T2 |
| 89 | 1+9.24e4T+5.58e9T2 |
| 97 | 1−8.86e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.965327287991973077483317782101, −9.732486282206262698381751056529, −8.519702580257030735517287136212, −7.39165805646151480008715083274, −6.61900138018782737815354564497, −5.75703300798018064365204413912, −4.54211727578384964109809545914, −3.79943443174194161713384194470, −2.89262252142159593786964731452, −1.50972909546318885739284648934,
0.14084815648404601439808377300, 0.821467616039885812062343391732, 2.34487496336961606673315640316, 3.25752862759277821369152563139, 4.20516681787457169756255757504, 5.79535493991217841775337360206, 6.34840419425341870472603459783, 7.05068201299960722068627753270, 8.027474014460970399086944292357, 8.955392916343921477121183495162