Properties

Label 2-800-8.5-c5-0-8
Degree $2$
Conductor $800$
Sign $-0.451 + 0.892i$
Analytic cond. $128.307$
Root an. cond. $11.3272$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11.5i·3-s − 231.·7-s + 108.·9-s + 559. i·11-s − 107. i·13-s + 441.·17-s + 1.87e3i·19-s − 2.68e3i·21-s − 3.83e3·23-s + 4.07e3i·27-s + 3.36e3i·29-s + 7.95e3·31-s − 6.48e3·33-s + 1.06e4i·37-s + 1.25e3·39-s + ⋯
L(s)  = 1  + 0.743i·3-s − 1.78·7-s + 0.446·9-s + 1.39i·11-s − 0.177i·13-s + 0.370·17-s + 1.19i·19-s − 1.32i·21-s − 1.51·23-s + 1.07i·27-s + 0.744i·29-s + 1.48·31-s − 1.03·33-s + 1.28i·37-s + 0.131·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.451 + 0.892i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.451 + 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-0.451 + 0.892i$
Analytic conductor: \(128.307\)
Root analytic conductor: \(11.3272\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (401, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :5/2),\ -0.451 + 0.892i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.5464277134\)
\(L(\frac12)\) \(\approx\) \(0.5464277134\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 11.5iT - 243T^{2} \)
7 \( 1 + 231.T + 1.68e4T^{2} \)
11 \( 1 - 559. iT - 1.61e5T^{2} \)
13 \( 1 + 107. iT - 3.71e5T^{2} \)
17 \( 1 - 441.T + 1.41e6T^{2} \)
19 \( 1 - 1.87e3iT - 2.47e6T^{2} \)
23 \( 1 + 3.83e3T + 6.43e6T^{2} \)
29 \( 1 - 3.36e3iT - 2.05e7T^{2} \)
31 \( 1 - 7.95e3T + 2.86e7T^{2} \)
37 \( 1 - 1.06e4iT - 6.93e7T^{2} \)
41 \( 1 + 9.96e3T + 1.15e8T^{2} \)
43 \( 1 - 925. iT - 1.47e8T^{2} \)
47 \( 1 - 8.06e3T + 2.29e8T^{2} \)
53 \( 1 - 7.95e3iT - 4.18e8T^{2} \)
59 \( 1 + 1.68e4iT - 7.14e8T^{2} \)
61 \( 1 - 1.12e4iT - 8.44e8T^{2} \)
67 \( 1 - 3.36e4iT - 1.35e9T^{2} \)
71 \( 1 - 8.86e3T + 1.80e9T^{2} \)
73 \( 1 + 5.55e4T + 2.07e9T^{2} \)
79 \( 1 + 6.94e4T + 3.07e9T^{2} \)
83 \( 1 + 1.02e4iT - 3.93e9T^{2} \)
89 \( 1 + 9.24e4T + 5.58e9T^{2} \)
97 \( 1 - 8.86e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.965327287991973077483317782101, −9.732486282206262698381751056529, −8.519702580257030735517287136212, −7.39165805646151480008715083274, −6.61900138018782737815354564497, −5.75703300798018064365204413912, −4.54211727578384964109809545914, −3.79943443174194161713384194470, −2.89262252142159593786964731452, −1.50972909546318885739284648934, 0.14084815648404601439808377300, 0.821467616039885812062343391732, 2.34487496336961606673315640316, 3.25752862759277821369152563139, 4.20516681787457169756255757504, 5.79535493991217841775337360206, 6.34840419425341870472603459783, 7.05068201299960722068627753270, 8.027474014460970399086944292357, 8.955392916343921477121183495162

Graph of the $Z$-function along the critical line