Properties

Label 2-800-8.5-c5-0-83
Degree $2$
Conductor $800$
Sign $-0.485 - 0.874i$
Analytic cond. $128.307$
Root an. cond. $11.3272$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 23.5i·3-s + 39.5·7-s − 311.·9-s − 236. i·11-s + 942. i·13-s + 1.10e3·17-s − 2.31e3i·19-s − 931. i·21-s − 861.·23-s + 1.61e3i·27-s + 1.66e3i·29-s + 4.18e3·31-s − 5.57e3·33-s − 1.45e4i·37-s + 2.21e4·39-s + ⋯
L(s)  = 1  − 1.51i·3-s + 0.305·7-s − 1.28·9-s − 0.589i·11-s + 1.54i·13-s + 0.925·17-s − 1.47i·19-s − 0.461i·21-s − 0.339·23-s + 0.425i·27-s + 0.368i·29-s + 0.782·31-s − 0.890·33-s − 1.75i·37-s + 2.33·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.485 - 0.874i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.485 - 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-0.485 - 0.874i$
Analytic conductor: \(128.307\)
Root analytic conductor: \(11.3272\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (401, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :5/2),\ -0.485 - 0.874i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.5687131389\)
\(L(\frac12)\) \(\approx\) \(0.5687131389\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 23.5iT - 243T^{2} \)
7 \( 1 - 39.5T + 1.68e4T^{2} \)
11 \( 1 + 236. iT - 1.61e5T^{2} \)
13 \( 1 - 942. iT - 3.71e5T^{2} \)
17 \( 1 - 1.10e3T + 1.41e6T^{2} \)
19 \( 1 + 2.31e3iT - 2.47e6T^{2} \)
23 \( 1 + 861.T + 6.43e6T^{2} \)
29 \( 1 - 1.66e3iT - 2.05e7T^{2} \)
31 \( 1 - 4.18e3T + 2.86e7T^{2} \)
37 \( 1 + 1.45e4iT - 6.93e7T^{2} \)
41 \( 1 + 2.00e4T + 1.15e8T^{2} \)
43 \( 1 - 5.24e3iT - 1.47e8T^{2} \)
47 \( 1 + 2.16e4T + 2.29e8T^{2} \)
53 \( 1 + 1.49e4iT - 4.18e8T^{2} \)
59 \( 1 - 4.24e4iT - 7.14e8T^{2} \)
61 \( 1 - 3.11e4iT - 8.44e8T^{2} \)
67 \( 1 + 2.78e4iT - 1.35e9T^{2} \)
71 \( 1 + 4.23e4T + 1.80e9T^{2} \)
73 \( 1 + 1.17e4T + 2.07e9T^{2} \)
79 \( 1 - 6.98e4T + 3.07e9T^{2} \)
83 \( 1 - 6.45e3iT - 3.93e9T^{2} \)
89 \( 1 - 2.56e4T + 5.58e9T^{2} \)
97 \( 1 + 1.51e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.723502771756559658384076712918, −8.023613169491205488488731447250, −7.06053189939733005131728839800, −6.61893917018429924547719368987, −5.60516191491597011188485550668, −4.47794576302888146482866505848, −3.10238493523995602253188313004, −2.00867654097811933792293392396, −1.21614302252411029040952444395, −0.11431322458028902680481745703, 1.47040976892409855037365698912, 3.06531178259580022673721020604, 3.69802176555127879029023995904, 4.84129276072936338556248984361, 5.34991922764009220064335656597, 6.41047140747676049140784065718, 7.974943721608770556263635021743, 8.222615254103444584474437475241, 9.623106470800157907978362933682, 10.10612045206817537193754404989

Graph of the $Z$-function along the critical line