L(s) = 1 | − 2.38·2-s − 2.75·3-s + 3.70·4-s + 0.982·5-s + 6.57·6-s − 4.06·8-s + 4.57·9-s − 2.34·10-s − 0.587·11-s − 10.1·12-s − 2.70·15-s + 2.30·16-s − 6.45·17-s − 10.9·18-s − 3.82·19-s + 3.63·20-s + 1.40·22-s + 8.26·23-s + 11.1·24-s − 4.03·25-s − 4.32·27-s − 3.96·29-s + 6.45·30-s − 2.98·31-s + 2.62·32-s + 1.61·33-s + 15.4·34-s + ⋯ |
L(s) = 1 | − 1.68·2-s − 1.58·3-s + 1.85·4-s + 0.439·5-s + 2.68·6-s − 1.43·8-s + 1.52·9-s − 0.741·10-s − 0.177·11-s − 2.94·12-s − 0.697·15-s + 0.576·16-s − 1.56·17-s − 2.57·18-s − 0.877·19-s + 0.813·20-s + 0.299·22-s + 1.72·23-s + 2.28·24-s − 0.807·25-s − 0.831·27-s − 0.735·29-s + 1.17·30-s − 0.536·31-s + 0.464·32-s + 0.281·33-s + 2.64·34-s + ⋯ |
Λ(s)=(=(8281s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8281s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1 |
good | 2 | 1+2.38T+2T2 |
| 3 | 1+2.75T+3T2 |
| 5 | 1−0.982T+5T2 |
| 11 | 1+0.587T+11T2 |
| 17 | 1+6.45T+17T2 |
| 19 | 1+3.82T+19T2 |
| 23 | 1−8.26T+23T2 |
| 29 | 1+3.96T+29T2 |
| 31 | 1+2.98T+31T2 |
| 37 | 1−1.75T+37T2 |
| 41 | 1−3.67T+41T2 |
| 43 | 1−6.38T+43T2 |
| 47 | 1+4.34T+47T2 |
| 53 | 1−0.425T+53T2 |
| 59 | 1−6.00T+59T2 |
| 61 | 1−2.20T+61T2 |
| 67 | 1−7.01T+67T2 |
| 71 | 1−3.60T+71T2 |
| 73 | 1−4.93T+73T2 |
| 79 | 1−2.78T+79T2 |
| 83 | 1+2.86T+83T2 |
| 89 | 1+2.09T+89T2 |
| 97 | 1−7.69T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.35406491711751018747600687146, −6.80625573833046745289519899946, −6.35736710814792257046606104729, −5.62579527414048991257808862727, −4.88302420129346247591177472128, −4.05086090158787778710198752280, −2.53879277040556516444517951049, −1.83304595444883949530609874929, −0.830673765686925700893816157909, 0,
0.830673765686925700893816157909, 1.83304595444883949530609874929, 2.53879277040556516444517951049, 4.05086090158787778710198752280, 4.88302420129346247591177472128, 5.62579527414048991257808862727, 6.35736710814792257046606104729, 6.80625573833046745289519899946, 7.35406491711751018747600687146