L(s) = 1 | − 2-s − 3·3-s − 4-s − 3·5-s + 3·6-s + 3·8-s + 6·9-s + 3·10-s + 3·11-s + 3·12-s + 9·15-s − 16-s − 2·17-s − 6·18-s + 19-s + 3·20-s − 3·22-s − 9·24-s + 4·25-s − 9·27-s + 7·29-s − 9·30-s − 3·31-s − 5·32-s − 9·33-s + 2·34-s − 6·36-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.73·3-s − 1/2·4-s − 1.34·5-s + 1.22·6-s + 1.06·8-s + 2·9-s + 0.948·10-s + 0.904·11-s + 0.866·12-s + 2.32·15-s − 1/4·16-s − 0.485·17-s − 1.41·18-s + 0.229·19-s + 0.670·20-s − 0.639·22-s − 1.83·24-s + 4/5·25-s − 1.73·27-s + 1.29·29-s − 1.64·30-s − 0.538·31-s − 0.883·32-s − 1.56·33-s + 0.342·34-s − 36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + T + p T^{2} \) |
| 3 | \( 1 + p T + p T^{2} \) |
| 5 | \( 1 + 3 T + p T^{2} \) |
| 11 | \( 1 - 3 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 - T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 7 T + p T^{2} \) |
| 31 | \( 1 + 3 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 + 3 T + p T^{2} \) |
| 43 | \( 1 + 7 T + p T^{2} \) |
| 47 | \( 1 + T + p T^{2} \) |
| 53 | \( 1 - 3 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 + 13 T + p T^{2} \) |
| 67 | \( 1 - 3 T + p T^{2} \) |
| 71 | \( 1 + 13 T + p T^{2} \) |
| 73 | \( 1 - 13 T + p T^{2} \) |
| 79 | \( 1 + 3 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 - 5 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.34653217409442361007635770904, −6.88609541894907685107242950034, −6.20588659825817015589837752890, −5.26679899371483271460791475079, −4.62968714970321833423069822955, −4.18578003289748517772945613581, −3.39623047931673382382480126609, −1.62051301875576214855906077685, −0.76672740644198251690228001108, 0,
0.76672740644198251690228001108, 1.62051301875576214855906077685, 3.39623047931673382382480126609, 4.18578003289748517772945613581, 4.62968714970321833423069822955, 5.26679899371483271460791475079, 6.20588659825817015589837752890, 6.88609541894907685107242950034, 7.34653217409442361007635770904