Properties

Label 2-845-65.47-c1-0-6
Degree $2$
Conductor $845$
Sign $0.918 + 0.396i$
Analytic cond. $6.74735$
Root an. cond. $2.59756$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.64i·2-s + (0.917 − 0.917i)3-s − 5.02·4-s + (−1.81 + 1.30i)5-s + (−2.43 − 2.43i)6-s + 0.112·7-s + 8.00i·8-s + 1.31i·9-s + (3.45 + 4.81i)10-s + (−1.31 + 1.31i)11-s + (−4.60 + 4.60i)12-s − 0.297i·14-s + (−0.470 + 2.86i)15-s + 11.1·16-s + (1.93 − 1.93i)17-s + 3.49·18-s + ⋯
L(s)  = 1  − 1.87i·2-s + (0.529 − 0.529i)3-s − 2.51·4-s + (−0.812 + 0.583i)5-s + (−0.992 − 0.992i)6-s + 0.0424·7-s + 2.83i·8-s + 0.439i·9-s + (1.09 + 1.52i)10-s + (−0.395 + 0.395i)11-s + (−1.32 + 1.32i)12-s − 0.0795i·14-s + (−0.121 + 0.738i)15-s + 2.79·16-s + (0.468 − 0.468i)17-s + 0.823·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.918 + 0.396i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.918 + 0.396i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(845\)    =    \(5 \cdot 13^{2}\)
Sign: $0.918 + 0.396i$
Analytic conductor: \(6.74735\)
Root analytic conductor: \(2.59756\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{845} (437, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 845,\ (\ :1/2),\ 0.918 + 0.396i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.755283 - 0.156100i\)
\(L(\frac12)\) \(\approx\) \(0.755283 - 0.156100i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (1.81 - 1.30i)T \)
13 \( 1 \)
good2 \( 1 + 2.64iT - 2T^{2} \)
3 \( 1 + (-0.917 + 0.917i)T - 3iT^{2} \)
7 \( 1 - 0.112T + 7T^{2} \)
11 \( 1 + (1.31 - 1.31i)T - 11iT^{2} \)
17 \( 1 + (-1.93 + 1.93i)T - 17iT^{2} \)
19 \( 1 + (4.92 - 4.92i)T - 19iT^{2} \)
23 \( 1 + (-2.27 - 2.27i)T + 23iT^{2} \)
29 \( 1 - 4.65iT - 29T^{2} \)
31 \( 1 + (-0.624 - 0.624i)T + 31iT^{2} \)
37 \( 1 + 1.47T + 37T^{2} \)
41 \( 1 + (3.83 + 3.83i)T + 41iT^{2} \)
43 \( 1 + (-2.75 - 2.75i)T + 43iT^{2} \)
47 \( 1 - 0.345T + 47T^{2} \)
53 \( 1 + (3.59 - 3.59i)T - 53iT^{2} \)
59 \( 1 + (0.908 + 0.908i)T + 59iT^{2} \)
61 \( 1 + 2.78T + 61T^{2} \)
67 \( 1 - 0.144iT - 67T^{2} \)
71 \( 1 + (-3.87 - 3.87i)T + 71iT^{2} \)
73 \( 1 - 9.06iT - 73T^{2} \)
79 \( 1 - 15.1iT - 79T^{2} \)
83 \( 1 + 8.53T + 83T^{2} \)
89 \( 1 + (-0.402 - 0.402i)T + 89iT^{2} \)
97 \( 1 - 14.9iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.45311751572728297999645236628, −9.567267334191876630439910811237, −8.479531368755209056092641983682, −7.977215911071150110224526197219, −6.98351930272320839943307755684, −5.29188789193468824073398066866, −4.29025949455837727148282369847, −3.32902290573613682791272741116, −2.55221835181008209639276651838, −1.50715762840483327862799284679, 0.37302852435220592959766298274, 3.30871863095021436588394679680, 4.31981395054822624326278696812, 4.87200038941354527754349822317, 6.03226046904129149607671360152, 6.82655997062205557991485363316, 7.84006235833600888148196457398, 8.439069527529720009085784825944, 8.951513838987821319119644847016, 9.736344193210748419035317207179

Graph of the $Z$-function along the critical line