L(s) = 1 | − 2.64i·2-s + (0.917 − 0.917i)3-s − 5.02·4-s + (−1.81 + 1.30i)5-s + (−2.43 − 2.43i)6-s + 0.112·7-s + 8.00i·8-s + 1.31i·9-s + (3.45 + 4.81i)10-s + (−1.31 + 1.31i)11-s + (−4.60 + 4.60i)12-s − 0.297i·14-s + (−0.470 + 2.86i)15-s + 11.1·16-s + (1.93 − 1.93i)17-s + 3.49·18-s + ⋯ |
L(s) = 1 | − 1.87i·2-s + (0.529 − 0.529i)3-s − 2.51·4-s + (−0.812 + 0.583i)5-s + (−0.992 − 0.992i)6-s + 0.0424·7-s + 2.83i·8-s + 0.439i·9-s + (1.09 + 1.52i)10-s + (−0.395 + 0.395i)11-s + (−1.32 + 1.32i)12-s − 0.0795i·14-s + (−0.121 + 0.738i)15-s + 2.79·16-s + (0.468 − 0.468i)17-s + 0.823·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.918 + 0.396i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.918 + 0.396i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.755283 - 0.156100i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.755283 - 0.156100i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.81 - 1.30i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 2.64iT - 2T^{2} \) |
| 3 | \( 1 + (-0.917 + 0.917i)T - 3iT^{2} \) |
| 7 | \( 1 - 0.112T + 7T^{2} \) |
| 11 | \( 1 + (1.31 - 1.31i)T - 11iT^{2} \) |
| 17 | \( 1 + (-1.93 + 1.93i)T - 17iT^{2} \) |
| 19 | \( 1 + (4.92 - 4.92i)T - 19iT^{2} \) |
| 23 | \( 1 + (-2.27 - 2.27i)T + 23iT^{2} \) |
| 29 | \( 1 - 4.65iT - 29T^{2} \) |
| 31 | \( 1 + (-0.624 - 0.624i)T + 31iT^{2} \) |
| 37 | \( 1 + 1.47T + 37T^{2} \) |
| 41 | \( 1 + (3.83 + 3.83i)T + 41iT^{2} \) |
| 43 | \( 1 + (-2.75 - 2.75i)T + 43iT^{2} \) |
| 47 | \( 1 - 0.345T + 47T^{2} \) |
| 53 | \( 1 + (3.59 - 3.59i)T - 53iT^{2} \) |
| 59 | \( 1 + (0.908 + 0.908i)T + 59iT^{2} \) |
| 61 | \( 1 + 2.78T + 61T^{2} \) |
| 67 | \( 1 - 0.144iT - 67T^{2} \) |
| 71 | \( 1 + (-3.87 - 3.87i)T + 71iT^{2} \) |
| 73 | \( 1 - 9.06iT - 73T^{2} \) |
| 79 | \( 1 - 15.1iT - 79T^{2} \) |
| 83 | \( 1 + 8.53T + 83T^{2} \) |
| 89 | \( 1 + (-0.402 - 0.402i)T + 89iT^{2} \) |
| 97 | \( 1 - 14.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45311751572728297999645236628, −9.567267334191876630439910811237, −8.479531368755209056092641983682, −7.977215911071150110224526197219, −6.98351930272320839943307755684, −5.29188789193468824073398066866, −4.29025949455837727148282369847, −3.32902290573613682791272741116, −2.55221835181008209639276651838, −1.50715762840483327862799284679,
0.37302852435220592959766298274, 3.30871863095021436588394679680, 4.31981395054822624326278696812, 4.87200038941354527754349822317, 6.03226046904129149607671360152, 6.82655997062205557991485363316, 7.84006235833600888148196457398, 8.439069527529720009085784825944, 8.951513838987821319119644847016, 9.736344193210748419035317207179