L(s) = 1 | + 0.131i·2-s + (−0.243 − 0.243i)3-s + 1.98·4-s + (2.08 − 0.813i)5-s + (0.0319 − 0.0319i)6-s − 2.78·7-s + 0.522i·8-s − 2.88i·9-s + (0.106 + 0.273i)10-s + (2.86 + 2.86i)11-s + (−0.482 − 0.482i)12-s − 0.365i·14-s + (−0.704 − 0.308i)15-s + 3.89·16-s + (−1.71 − 1.71i)17-s + 0.378·18-s + ⋯ |
L(s) = 1 | + 0.0928i·2-s + (−0.140 − 0.140i)3-s + 0.991·4-s + (0.931 − 0.363i)5-s + (0.0130 − 0.0130i)6-s − 1.05·7-s + 0.184i·8-s − 0.960i·9-s + (0.0337 + 0.0864i)10-s + (0.864 + 0.864i)11-s + (−0.139 − 0.139i)12-s − 0.0976i·14-s + (−0.181 − 0.0797i)15-s + 0.974·16-s + (−0.415 − 0.415i)17-s + 0.0891·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.889 + 0.457i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.889 + 0.457i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.03433 - 0.492860i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.03433 - 0.492860i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.08 + 0.813i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 0.131iT - 2T^{2} \) |
| 3 | \( 1 + (0.243 + 0.243i)T + 3iT^{2} \) |
| 7 | \( 1 + 2.78T + 7T^{2} \) |
| 11 | \( 1 + (-2.86 - 2.86i)T + 11iT^{2} \) |
| 17 | \( 1 + (1.71 + 1.71i)T + 17iT^{2} \) |
| 19 | \( 1 + (-1.34 - 1.34i)T + 19iT^{2} \) |
| 23 | \( 1 + (-5.64 + 5.64i)T - 23iT^{2} \) |
| 29 | \( 1 - 4.57iT - 29T^{2} \) |
| 31 | \( 1 + (-3.87 + 3.87i)T - 31iT^{2} \) |
| 37 | \( 1 + 7.01T + 37T^{2} \) |
| 41 | \( 1 + (4.54 - 4.54i)T - 41iT^{2} \) |
| 43 | \( 1 + (-4.57 + 4.57i)T - 43iT^{2} \) |
| 47 | \( 1 + 0.512T + 47T^{2} \) |
| 53 | \( 1 + (1.32 + 1.32i)T + 53iT^{2} \) |
| 59 | \( 1 + (1.85 - 1.85i)T - 59iT^{2} \) |
| 61 | \( 1 + 1.28T + 61T^{2} \) |
| 67 | \( 1 + 3.61iT - 67T^{2} \) |
| 71 | \( 1 + (-4.54 + 4.54i)T - 71iT^{2} \) |
| 73 | \( 1 - 9.93iT - 73T^{2} \) |
| 79 | \( 1 - 8.37iT - 79T^{2} \) |
| 83 | \( 1 - 3.17T + 83T^{2} \) |
| 89 | \( 1 + (-4.40 + 4.40i)T - 89iT^{2} \) |
| 97 | \( 1 - 11.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.981540371325120053222375645422, −9.422788302659769467106530812562, −8.648092636030954237378339459108, −7.08635580396525122091410289180, −6.66002858123836291626779113626, −6.09831572687956600813385778047, −4.93327233563966699460240420652, −3.51201364127927109765984051833, −2.46395682183697622778210120539, −1.17777456569643888648088585316,
1.52412774748482439328381123465, 2.74193494047716484393546360332, 3.51651701643033565557865486144, 5.18500054467159828639152312038, 6.08599032058861460430693505672, 6.63467205640087584197647479401, 7.45629296309505698644327028401, 8.736717114145014693816185343487, 9.583356007920477538270835127122, 10.35481248073282101191468064040