L(s) = 1 | − 2-s + (1 − i)3-s − 4-s + (1 − 2i)5-s + (−1 + i)6-s + 2i·7-s + 3·8-s + i·9-s + (−1 + 2i)10-s + (1 + i)11-s + (−1 + i)12-s − 2i·14-s + (−1 − 3i)15-s − 16-s + (1 − i)17-s − i·18-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.577 − 0.577i)3-s − 0.5·4-s + (0.447 − 0.894i)5-s + (−0.408 + 0.408i)6-s + 0.755i·7-s + 1.06·8-s + 0.333i·9-s + (−0.316 + 0.632i)10-s + (0.301 + 0.301i)11-s + (−0.288 + 0.288i)12-s − 0.534i·14-s + (−0.258 − 0.774i)15-s − 0.250·16-s + (0.242 − 0.242i)17-s − 0.235i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.202i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 + 0.202i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28332 - 0.131403i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28332 - 0.131403i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1 + 2i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + T + 2T^{2} \) |
| 3 | \( 1 + (-1 + i)T - 3iT^{2} \) |
| 7 | \( 1 - 2iT - 7T^{2} \) |
| 11 | \( 1 + (-1 - i)T + 11iT^{2} \) |
| 17 | \( 1 + (-1 + i)T - 17iT^{2} \) |
| 19 | \( 1 + (-5 - 5i)T + 19iT^{2} \) |
| 23 | \( 1 + (-3 - 3i)T + 23iT^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + (5 - 5i)T - 31iT^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 + (-7 + 7i)T - 41iT^{2} \) |
| 43 | \( 1 + (1 + i)T + 43iT^{2} \) |
| 47 | \( 1 + 6iT - 47T^{2} \) |
| 53 | \( 1 + (-5 + 5i)T - 53iT^{2} \) |
| 59 | \( 1 + (-7 + 7i)T - 59iT^{2} \) |
| 61 | \( 1 + 14T + 61T^{2} \) |
| 67 | \( 1 - 4T + 67T^{2} \) |
| 71 | \( 1 + (1 - i)T - 71iT^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 + 2iT - 79T^{2} \) |
| 83 | \( 1 - 6iT - 83T^{2} \) |
| 89 | \( 1 + (5 - 5i)T - 89iT^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.771603836877251884773775302253, −9.200243757568709178948787298780, −8.589892060628199988297932936725, −7.86393576383177772408631645189, −7.12013911552666554509174432922, −5.53830459405669053066837003804, −5.08139319533093154557660687378, −3.67179757851147163288609765016, −2.10953878103430875221379245190, −1.21084142230392679343381123098,
0.972144737925849040283467433381, 2.78812498195416515094628135212, 3.74485120437661299109604353213, 4.63319390685027673512157737634, 5.95641936729707310798056473999, 7.07648791172497236625123409406, 7.70508098683079452437475299650, 8.869807578067059749431236062820, 9.391333516584839524505667349951, 9.997695735296556593516238364177