Properties

Label 2-845-65.63-c1-0-50
Degree 22
Conductor 845845
Sign 0.237+0.971i-0.237 + 0.971i
Analytic cond. 6.747356.74735
Root an. cond. 2.597562.59756
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.137 − 0.237i)2-s + (0.611 − 2.28i)3-s + (0.962 − 1.66i)4-s + (1.69 + 1.45i)5-s + (−0.627 + 0.168i)6-s + (0.334 + 0.193i)7-s − 1.07·8-s + (−2.23 − 1.29i)9-s + (0.112 − 0.604i)10-s + (4.21 + 1.12i)11-s + (−3.21 − 3.21i)12-s − 0.106i·14-s + (4.35 − 2.98i)15-s + (−1.77 − 3.07i)16-s + (−1.90 + 0.510i)17-s + 0.710i·18-s + ⋯
L(s)  = 1  + (−0.0971 − 0.168i)2-s + (0.353 − 1.31i)3-s + (0.481 − 0.833i)4-s + (0.759 + 0.650i)5-s + (−0.256 + 0.0686i)6-s + (0.126 + 0.0729i)7-s − 0.381·8-s + (−0.745 − 0.430i)9-s + (0.0356 − 0.191i)10-s + (1.27 + 0.340i)11-s + (−0.928 − 0.928i)12-s − 0.0283i·14-s + (1.12 − 0.771i)15-s + (−0.444 − 0.769i)16-s + (−0.462 + 0.123i)17-s + 0.167i·18-s + ⋯

Functional equation

Λ(s)=(845s/2ΓC(s)L(s)=((0.237+0.971i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.237 + 0.971i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(845s/2ΓC(s+1/2)L(s)=((0.237+0.971i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.237 + 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 845845    =    51325 \cdot 13^{2}
Sign: 0.237+0.971i-0.237 + 0.971i
Analytic conductor: 6.747356.74735
Root analytic conductor: 2.597562.59756
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ845(258,)\chi_{845} (258, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 845, ( :1/2), 0.237+0.971i)(2,\ 845,\ (\ :1/2),\ -0.237 + 0.971i)

Particular Values

L(1)L(1) \approx 1.362351.73603i1.36235 - 1.73603i
L(12)L(\frac12) \approx 1.362351.73603i1.36235 - 1.73603i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1+(1.691.45i)T 1 + (-1.69 - 1.45i)T
13 1 1
good2 1+(0.137+0.237i)T+(1+1.73i)T2 1 + (0.137 + 0.237i)T + (-1 + 1.73i)T^{2}
3 1+(0.611+2.28i)T+(2.591.5i)T2 1 + (-0.611 + 2.28i)T + (-2.59 - 1.5i)T^{2}
7 1+(0.3340.193i)T+(3.5+6.06i)T2 1 + (-0.334 - 0.193i)T + (3.5 + 6.06i)T^{2}
11 1+(4.211.12i)T+(9.52+5.5i)T2 1 + (-4.21 - 1.12i)T + (9.52 + 5.5i)T^{2}
17 1+(1.900.510i)T+(14.78.5i)T2 1 + (1.90 - 0.510i)T + (14.7 - 8.5i)T^{2}
19 1+(1.29+4.83i)T+(16.4+9.5i)T2 1 + (1.29 + 4.83i)T + (-16.4 + 9.5i)T^{2}
23 1+(0.322+0.0863i)T+(19.9+11.5i)T2 1 + (0.322 + 0.0863i)T + (19.9 + 11.5i)T^{2}
29 1+(7.07+4.08i)T+(14.525.1i)T2 1 + (-7.07 + 4.08i)T + (14.5 - 25.1i)T^{2}
31 1+(2.54+2.54i)T+31iT2 1 + (2.54 + 2.54i)T + 31iT^{2}
37 1+(4.172.41i)T+(18.532.0i)T2 1 + (4.17 - 2.41i)T + (18.5 - 32.0i)T^{2}
41 1+(1.204.49i)T+(35.520.5i)T2 1 + (1.20 - 4.49i)T + (-35.5 - 20.5i)T^{2}
43 1+(1.766.58i)T+(37.2+21.5i)T2 1 + (-1.76 - 6.58i)T + (-37.2 + 21.5i)T^{2}
47 19.83iT47T2 1 - 9.83iT - 47T^{2}
53 1+(7.17+7.17i)T+53iT2 1 + (7.17 + 7.17i)T + 53iT^{2}
59 1+(2.340.628i)T+(51.029.5i)T2 1 + (2.34 - 0.628i)T + (51.0 - 29.5i)T^{2}
61 1+(5.329.22i)T+(30.552.8i)T2 1 + (5.32 - 9.22i)T + (-30.5 - 52.8i)T^{2}
67 1+(3.185.52i)T+(33.5+58.0i)T2 1 + (-3.18 - 5.52i)T + (-33.5 + 58.0i)T^{2}
71 1+(4.20+1.12i)T+(61.435.5i)T2 1 + (-4.20 + 1.12i)T + (61.4 - 35.5i)T^{2}
73 16.08T+73T2 1 - 6.08T + 73T^{2}
79 13.34iT79T2 1 - 3.34iT - 79T^{2}
83 15.18iT83T2 1 - 5.18iT - 83T^{2}
89 1+(1.29+4.82i)T+(77.044.5i)T2 1 + (-1.29 + 4.82i)T + (-77.0 - 44.5i)T^{2}
97 1+(7.3712.7i)T+(48.584.0i)T2 1 + (7.37 - 12.7i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.844261357530586674884388148844, −9.259665300066284837485172893167, −8.199104822976977027367351949936, −6.99581695931748720793388325363, −6.62395952954203989486898856464, −6.03703504765412887377169228081, −4.66156402332962929096616526744, −2.87318597791503193531854909952, −2.05441249413196440234872548205, −1.19853331229559434048470032974, 1.80793223431725146496982469510, 3.27743587114677822804621595826, 4.01262995199187825408598086235, 4.93796016354784491589561106930, 6.09413605633198623662852498594, 6.93193921853631595791713241633, 8.285088348182308208670433131168, 8.849054829090313782142440570722, 9.390187052216165872473830931763, 10.37138152539803138024712694751

Graph of the ZZ-function along the critical line