L(s) = 1 | + (1.32 − 2.29i)2-s + (0.335 + 1.25i)3-s + (−2.51 − 4.34i)4-s + (1.30 + 1.81i)5-s + (3.31 + 0.889i)6-s + (0.0972 − 0.0561i)7-s − 8.00·8-s + (1.14 − 0.658i)9-s + (5.89 − 0.585i)10-s + (1.78 − 0.479i)11-s + (4.60 − 4.60i)12-s − 0.297i·14-s + (−1.83 + 2.24i)15-s + (−5.58 + 9.67i)16-s + (2.63 + 0.706i)17-s − 3.49i·18-s + ⋯ |
L(s) = 1 | + (0.936 − 1.62i)2-s + (0.193 + 0.723i)3-s + (−1.25 − 2.17i)4-s + (0.583 + 0.812i)5-s + (1.35 + 0.363i)6-s + (0.0367 − 0.0212i)7-s − 2.83·8-s + (0.380 − 0.219i)9-s + (1.86 − 0.185i)10-s + (0.539 − 0.144i)11-s + (1.32 − 1.32i)12-s − 0.0795i·14-s + (−0.474 + 0.579i)15-s + (−1.39 + 2.41i)16-s + (0.639 + 0.171i)17-s − 0.823i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.151 + 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.151 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.89033 - 2.20246i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.89033 - 2.20246i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1.30 - 1.81i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-1.32 + 2.29i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.335 - 1.25i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.0972 + 0.0561i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.78 + 0.479i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-2.63 - 0.706i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.80 + 6.72i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-3.10 + 0.831i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (4.03 + 2.32i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.624 + 0.624i)T - 31iT^{2} \) |
| 37 | \( 1 + (-1.27 - 0.737i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.40 + 5.24i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (1.00 - 3.76i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 0.345iT - 47T^{2} \) |
| 53 | \( 1 + (3.59 - 3.59i)T - 53iT^{2} \) |
| 59 | \( 1 + (1.24 + 0.332i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.39 - 2.41i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.0721 - 0.124i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (5.28 + 1.41i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 9.06T + 73T^{2} \) |
| 79 | \( 1 - 15.1iT - 79T^{2} \) |
| 83 | \( 1 - 8.53iT - 83T^{2} \) |
| 89 | \( 1 + (0.147 + 0.549i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (7.48 + 12.9i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08131896223420051157823999506, −9.569718718599766744194494391138, −8.962592964488677947014836921421, −7.15292242865437169307860493769, −6.10797936985328110828503940873, −5.13571069131743323777397297444, −4.25794536227236698985234775791, −3.36141033169689710502551267897, −2.65152251112209191334173104521, −1.29153401544000360916509654711,
1.58588763845296692621616874732, 3.39867823083885514226506457164, 4.49131992088152941422634189942, 5.32947686957878927261186393757, 6.06191947662110188752811191671, 6.92213396767192548054717497296, 7.69708504806201772758498255182, 8.308098274931752324338297622556, 9.199366906562872408760308068298, 10.09539361837613217553247393789