L(s) = 1 | + 2.57i·2-s + 2.37·3-s − 4.64·4-s + (−1.95 − 1.08i)5-s + 6.12i·6-s + 1.53·7-s − 6.82i·8-s + 2.64·9-s + (2.79 − 5.04i)10-s − 3.95i·11-s − 11.0·12-s + 4.24i·13-s + 3.95i·14-s + (−4.64 − 2.57i)15-s + 8.29·16-s + (−3.21 − 2.57i)17-s + ⋯ |
L(s) = 1 | + 1.82i·2-s + 1.37·3-s − 2.32·4-s + (−0.874 − 0.485i)5-s + 2.50i·6-s + 0.579·7-s − 2.41i·8-s + 0.881·9-s + (0.884 − 1.59i)10-s − 1.19i·11-s − 3.18·12-s + 1.17i·13-s + 1.05i·14-s + (−1.19 − 0.665i)15-s + 2.07·16-s + (−0.780 − 0.625i)17-s + ⋯ |
Λ(s)=(=(85s/2ΓC(s)L(s)(−0.379−0.925i)Λ(2−s)
Λ(s)=(=(85s/2ΓC(s+1/2)L(s)(−0.379−0.925i)Λ(1−s)
Degree: |
2 |
Conductor: |
85
= 5⋅17
|
Sign: |
−0.379−0.925i
|
Analytic conductor: |
0.678728 |
Root analytic conductor: |
0.823849 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ85(84,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 85, ( :1/2), −0.379−0.925i)
|
Particular Values
L(1) |
≈ |
0.634464+0.945503i |
L(21) |
≈ |
0.634464+0.945503i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(1.95+1.08i)T |
| 17 | 1+(3.21+2.57i)T |
good | 2 | 1−2.57iT−2T2 |
| 3 | 1−2.37T+3T2 |
| 7 | 1−1.53T+7T2 |
| 11 | 1+3.95iT−11T2 |
| 13 | 1−4.24iT−13T2 |
| 19 | 1−2T+19T2 |
| 23 | 1+0.692T+23T2 |
| 29 | 1−4.33iT−29T2 |
| 31 | 1−1.78iT−31T2 |
| 37 | 1+3.06T+37T2 |
| 41 | 1+2.16iT−41T2 |
| 43 | 1+4.24iT−43T2 |
| 47 | 1−6.06iT−47T2 |
| 53 | 1+5.15iT−53T2 |
| 59 | 1−6T+59T2 |
| 61 | 1+10.0iT−61T2 |
| 67 | 1−4.24iT−67T2 |
| 71 | 1−16.2iT−71T2 |
| 73 | 1−8.66T+73T2 |
| 79 | 1+1.78iT−79T2 |
| 83 | 1+0.913iT−83T2 |
| 89 | 1−4.93T+89T2 |
| 97 | 1−11.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.48162940512177847276907176916, −14.10893658439922283577666474424, −13.16754113512634457994550190849, −11.46455011086872498069795365583, −9.189790641716475196893380937277, −8.666188862532127306995089434564, −7.895799120571995791302387879684, −6.86018552501915105505399030637, −5.05152282648177571533560451126, −3.77999412062202688487984034550,
2.20995064530167775550758063233, 3.40764566604337659687836213943, 4.51755913816531217305794115046, 7.68373300389451020797009461455, 8.513038257217313726281397790273, 9.730902690072061875399874804286, 10.66881779841706634799649368121, 11.74269134574097268269674451698, 12.74068404755526734681786618546, 13.66092930278243816096946520329