L(s) = 1 | + 2.57i·2-s + 2.37·3-s − 4.64·4-s + (−1.95 − 1.08i)5-s + 6.12i·6-s + 1.53·7-s − 6.82i·8-s + 2.64·9-s + (2.79 − 5.04i)10-s − 3.95i·11-s − 11.0·12-s + 4.24i·13-s + 3.95i·14-s + (−4.64 − 2.57i)15-s + 8.29·16-s + (−3.21 − 2.57i)17-s + ⋯ |
L(s) = 1 | + 1.82i·2-s + 1.37·3-s − 2.32·4-s + (−0.874 − 0.485i)5-s + 2.50i·6-s + 0.579·7-s − 2.41i·8-s + 0.881·9-s + (0.884 − 1.59i)10-s − 1.19i·11-s − 3.18·12-s + 1.17i·13-s + 1.05i·14-s + (−1.19 − 0.665i)15-s + 2.07·16-s + (−0.780 − 0.625i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.379 - 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.379 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.634464 + 0.945503i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.634464 + 0.945503i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.95 + 1.08i)T \) |
| 17 | \( 1 + (3.21 + 2.57i)T \) |
good | 2 | \( 1 - 2.57iT - 2T^{2} \) |
| 3 | \( 1 - 2.37T + 3T^{2} \) |
| 7 | \( 1 - 1.53T + 7T^{2} \) |
| 11 | \( 1 + 3.95iT - 11T^{2} \) |
| 13 | \( 1 - 4.24iT - 13T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + 0.692T + 23T^{2} \) |
| 29 | \( 1 - 4.33iT - 29T^{2} \) |
| 31 | \( 1 - 1.78iT - 31T^{2} \) |
| 37 | \( 1 + 3.06T + 37T^{2} \) |
| 41 | \( 1 + 2.16iT - 41T^{2} \) |
| 43 | \( 1 + 4.24iT - 43T^{2} \) |
| 47 | \( 1 - 6.06iT - 47T^{2} \) |
| 53 | \( 1 + 5.15iT - 53T^{2} \) |
| 59 | \( 1 - 6T + 59T^{2} \) |
| 61 | \( 1 + 10.0iT - 61T^{2} \) |
| 67 | \( 1 - 4.24iT - 67T^{2} \) |
| 71 | \( 1 - 16.2iT - 71T^{2} \) |
| 73 | \( 1 - 8.66T + 73T^{2} \) |
| 79 | \( 1 + 1.78iT - 79T^{2} \) |
| 83 | \( 1 + 0.913iT - 83T^{2} \) |
| 89 | \( 1 - 4.93T + 89T^{2} \) |
| 97 | \( 1 - 11.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.48162940512177847276907176916, −14.10893658439922283577666474424, −13.16754113512634457994550190849, −11.46455011086872498069795365583, −9.189790641716475196893380937277, −8.666188862532127306995089434564, −7.895799120571995791302387879684, −6.86018552501915105505399030637, −5.05152282648177571533560451126, −3.77999412062202688487984034550,
2.20995064530167775550758063233, 3.40764566604337659687836213943, 4.51755913816531217305794115046, 7.68373300389451020797009461455, 8.513038257217313726281397790273, 9.730902690072061875399874804286, 10.66881779841706634799649368121, 11.74269134574097268269674451698, 12.74068404755526734681786618546, 13.66092930278243816096946520329