L(s) = 1 | + (−0.923 + 0.382i)2-s + (−0.776 + 1.16i)3-s + (0.707 − 0.707i)4-s + (0.272 − 1.37i)6-s + (−0.749 + 3.77i)7-s + (−0.382 + 0.923i)8-s + (0.399 + 0.965i)9-s + (3.05 + 0.606i)11-s + (0.272 + 1.37i)12-s + 4.47·13-s + (−0.749 − 3.77i)14-s − i·16-s + (2.57 − 3.21i)17-s + (−0.738 − 0.738i)18-s + (−1.25 + 3.02i)19-s + ⋯ |
L(s) = 1 | + (−0.653 + 0.270i)2-s + (−0.448 + 0.671i)3-s + (0.353 − 0.353i)4-s + (0.111 − 0.559i)6-s + (−0.283 + 1.42i)7-s + (−0.135 + 0.326i)8-s + (0.133 + 0.321i)9-s + (0.919 + 0.182i)11-s + (0.0787 + 0.395i)12-s + 1.24·13-s + (−0.200 − 1.00i)14-s − 0.250i·16-s + (0.625 − 0.780i)17-s + (−0.174 − 0.174i)18-s + (−0.287 + 0.692i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.719 - 0.694i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.719 - 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.368960 + 0.913463i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.368960 + 0.913463i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.923 - 0.382i)T \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (-2.57 + 3.21i)T \) |
good | 3 | \( 1 + (0.776 - 1.16i)T + (-1.14 - 2.77i)T^{2} \) |
| 7 | \( 1 + (0.749 - 3.77i)T + (-6.46 - 2.67i)T^{2} \) |
| 11 | \( 1 + (-3.05 - 0.606i)T + (10.1 + 4.20i)T^{2} \) |
| 13 | \( 1 - 4.47T + 13T^{2} \) |
| 19 | \( 1 + (1.25 - 3.02i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (-2.05 + 1.36i)T + (8.80 - 21.2i)T^{2} \) |
| 29 | \( 1 + (-5.13 - 3.42i)T + (11.0 + 26.7i)T^{2} \) |
| 31 | \( 1 + (6.04 - 1.20i)T + (28.6 - 11.8i)T^{2} \) |
| 37 | \( 1 + (6.31 + 4.21i)T + (14.1 + 34.1i)T^{2} \) |
| 41 | \( 1 + (-1.67 + 1.12i)T + (15.6 - 37.8i)T^{2} \) |
| 43 | \( 1 + (-5.82 - 2.41i)T + (30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 - 9.31iT - 47T^{2} \) |
| 53 | \( 1 + (-4.76 - 11.5i)T + (-37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (4.66 - 1.93i)T + (41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (1.54 + 2.31i)T + (-23.3 + 56.3i)T^{2} \) |
| 67 | \( 1 + (6.06 + 6.06i)T + 67iT^{2} \) |
| 71 | \( 1 + (-0.137 - 0.691i)T + (-65.5 + 27.1i)T^{2} \) |
| 73 | \( 1 + (0.264 + 1.32i)T + (-67.4 + 27.9i)T^{2} \) |
| 79 | \( 1 + (-2.06 + 10.3i)T + (-72.9 - 30.2i)T^{2} \) |
| 83 | \( 1 + (12.3 - 5.12i)T + (58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (4.33 - 4.33i)T - 89iT^{2} \) |
| 97 | \( 1 + (-1.53 - 7.72i)T + (-89.6 + 37.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56688207953431244549195846153, −9.353947331591675037902049540149, −9.113496501605046025776006305413, −8.164403455178802724518870404503, −7.05688689709595162935919922587, −5.98781185113118965040088796892, −5.52887203661347798664008758489, −4.32642695301213015027287527612, −3.02023207027786292520927255056, −1.55997073430536695350719043871,
0.71874774658346399792727741135, 1.52335944999154391151049063505, 3.48392648742602161550445564652, 4.06793360532312164078620261846, 5.82510295491695036229035186755, 6.73050875171330585748794361335, 7.09268257903118618225755557172, 8.203191424396666187338901476975, 9.021677745890048283889021659533, 9.985919782634462078401151809334