Properties

Label 2-8512-1.1-c1-0-43
Degree $2$
Conductor $8512$
Sign $1$
Analytic cond. $67.9686$
Root an. cond. $8.24431$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.683·3-s − 4.16·5-s − 7-s − 2.53·9-s + 5.01·11-s + 6.32·13-s + 2.84·15-s + 4.96·17-s + 19-s + 0.683·21-s + 4.32·23-s + 12.3·25-s + 3.78·27-s − 1.20·29-s − 5.69·31-s − 3.42·33-s + 4.16·35-s − 2.79·37-s − 4.32·39-s + 0.164·41-s + 0.796·43-s + 10.5·45-s − 4.68·47-s + 49-s − 3.39·51-s − 4.05·53-s − 20.8·55-s + ⋯
L(s)  = 1  − 0.394·3-s − 1.86·5-s − 0.377·7-s − 0.844·9-s + 1.51·11-s + 1.75·13-s + 0.735·15-s + 1.20·17-s + 0.229·19-s + 0.149·21-s + 0.902·23-s + 2.46·25-s + 0.728·27-s − 0.223·29-s − 1.02·31-s − 0.596·33-s + 0.703·35-s − 0.459·37-s − 0.693·39-s + 0.0256·41-s + 0.121·43-s + 1.57·45-s − 0.683·47-s + 0.142·49-s − 0.475·51-s − 0.556·53-s − 2.81·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8512\)    =    \(2^{6} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(67.9686\)
Root analytic conductor: \(8.24431\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8512,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.223850550\)
\(L(\frac12)\) \(\approx\) \(1.223850550\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 + 0.683T + 3T^{2} \)
5 \( 1 + 4.16T + 5T^{2} \)
11 \( 1 - 5.01T + 11T^{2} \)
13 \( 1 - 6.32T + 13T^{2} \)
17 \( 1 - 4.96T + 17T^{2} \)
23 \( 1 - 4.32T + 23T^{2} \)
29 \( 1 + 1.20T + 29T^{2} \)
31 \( 1 + 5.69T + 31T^{2} \)
37 \( 1 + 2.79T + 37T^{2} \)
41 \( 1 - 0.164T + 41T^{2} \)
43 \( 1 - 0.796T + 43T^{2} \)
47 \( 1 + 4.68T + 47T^{2} \)
53 \( 1 + 4.05T + 53T^{2} \)
59 \( 1 + 6.49T + 59T^{2} \)
61 \( 1 - 1.64T + 61T^{2} \)
67 \( 1 + 1.03T + 67T^{2} \)
71 \( 1 - 9.01T + 71T^{2} \)
73 \( 1 - 12.0T + 73T^{2} \)
79 \( 1 - 0.467T + 79T^{2} \)
83 \( 1 + 4.65T + 83T^{2} \)
89 \( 1 + 7.01T + 89T^{2} \)
97 \( 1 + 5.64T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83579345786192943984695584159, −7.04171179811398836959951468765, −6.49017833760242067682406754301, −5.78983308678956390963276266188, −4.97050538025636767406596639677, −4.01090025700877096762517552198, −3.49242284823711334910908612793, −3.17863724697596094662929168042, −1.36698627201529995067622304909, −0.62163883261231003078288313739, 0.62163883261231003078288313739, 1.36698627201529995067622304909, 3.17863724697596094662929168042, 3.49242284823711334910908612793, 4.01090025700877096762517552198, 4.97050538025636767406596639677, 5.78983308678956390963276266188, 6.49017833760242067682406754301, 7.04171179811398836959951468765, 7.83579345786192943984695584159

Graph of the $Z$-function along the critical line