L(s) = 1 | + (−1.14 − 1.36i)2-s + (−0.205 + 1.16i)4-s + (−1.67 + 1.47i)5-s + (−3.67 − 2.11i)7-s + (−1.25 + 0.727i)8-s + (3.94 + 0.596i)10-s + (−0.245 − 0.425i)11-s + (1.42 + 3.91i)13-s + (1.31 + 7.45i)14-s + (4.66 + 1.69i)16-s + (1.30 + 1.55i)17-s + (−1.86 − 3.93i)19-s + (−1.38 − 2.26i)20-s + (−0.299 + 0.823i)22-s + (4.32 + 0.763i)23-s + ⋯ |
L(s) = 1 | + (−0.811 − 0.966i)2-s + (−0.102 + 0.583i)4-s + (−0.749 + 0.661i)5-s + (−1.38 − 0.801i)7-s + (−0.445 + 0.257i)8-s + (1.24 + 0.188i)10-s + (−0.0740 − 0.128i)11-s + (0.394 + 1.08i)13-s + (0.351 + 1.99i)14-s + (1.16 + 0.424i)16-s + (0.317 + 0.378i)17-s + (−0.428 − 0.903i)19-s + (−0.308 − 0.505i)20-s + (−0.0638 + 0.175i)22-s + (0.902 + 0.159i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.718 + 0.695i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.718 + 0.695i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.531321 - 0.215102i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.531321 - 0.215102i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (1.67 - 1.47i)T \) |
| 19 | \( 1 + (1.86 + 3.93i)T \) |
good | 2 | \( 1 + (1.14 + 1.36i)T + (-0.347 + 1.96i)T^{2} \) |
| 7 | \( 1 + (3.67 + 2.11i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.245 + 0.425i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.42 - 3.91i)T + (-9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (-1.30 - 1.55i)T + (-2.95 + 16.7i)T^{2} \) |
| 23 | \( 1 + (-4.32 - 0.763i)T + (21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (2.49 + 2.09i)T + (5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (2.04 - 3.54i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 2.14iT - 37T^{2} \) |
| 41 | \( 1 + (-4.10 - 1.49i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (-10.4 + 1.84i)T + (40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (-1.68 + 2.00i)T + (-8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + (-11.2 - 1.98i)T + (49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (0.415 - 0.348i)T + (10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (2.36 - 13.4i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (-4.60 + 5.48i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (1.04 + 5.94i)T + (-66.7 + 24.2i)T^{2} \) |
| 73 | \( 1 + (0.702 - 1.93i)T + (-55.9 - 46.9i)T^{2} \) |
| 79 | \( 1 + (-5.01 - 1.82i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (7.02 + 4.05i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.07 + 1.48i)T + (68.1 - 57.2i)T^{2} \) |
| 97 | \( 1 + (-3.62 - 4.32i)T + (-16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27823371757033662770593945830, −9.280883794842891939330797089358, −8.814092755228246897926395245512, −7.49890867557039858596367519657, −6.83356249217638995785902832039, −5.94733213772338678796847009717, −4.16631436593673985167368378376, −3.41947870942050037754955493037, −2.47041784901754950823703858366, −0.74810556718707225720616954909,
0.59603797698377910004505947187, 2.92526926510872376699210788435, 3.81694954039279945326347225392, 5.43327079047102938286151653409, 6.00292259705265381493846450215, 7.04367923963604530364845102924, 7.80494524964872235450843645119, 8.558697062878484188883946390887, 9.219708443551286445848123658011, 9.848183049567461505594368725617