Properties

Label 10-871e5-871.870-c0e5-0-0
Degree $10$
Conductor $5.013\times 10^{14}$
Sign $1$
Analytic cond. $0.0155194$
Root an. cond. $0.659306$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 5-s − 7-s + 5·9-s + 10-s − 11-s + 5·13-s + 14-s − 17-s − 5·18-s + 22-s − 23-s − 5·26-s − 29-s − 31-s + 34-s + 35-s − 41-s − 5·45-s + 46-s + 55-s + 58-s + 62-s − 5·63-s − 5·65-s + 5·67-s − 70-s + ⋯
L(s)  = 1  − 2-s − 5-s − 7-s + 5·9-s + 10-s − 11-s + 5·13-s + 14-s − 17-s − 5·18-s + 22-s − 23-s − 5·26-s − 29-s − 31-s + 34-s + 35-s − 41-s − 5·45-s + 46-s + 55-s + 58-s + 62-s − 5·63-s − 5·65-s + 5·67-s − 70-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(13^{5} \cdot 67^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(13^{5} \cdot 67^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(10\)
Conductor: \(13^{5} \cdot 67^{5}\)
Sign: $1$
Analytic conductor: \(0.0155194\)
Root analytic conductor: \(0.659306\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{871} (870, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((10,\ 13^{5} \cdot 67^{5} ,\ ( \ : 0, 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5050803489\)
\(L(\frac12)\) \(\approx\) \(0.5050803489\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad13$C_1$ \( ( 1 - T )^{5} \)
67$C_1$ \( ( 1 - T )^{5} \)
good2$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
5$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
7$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
11$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
17$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
23$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
29$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
31$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
41$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
97$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.41521777442232251601523839744, −6.38007336214568427242312476651, −6.22579924089976122148137893873, −5.96606895551648770807377357818, −5.67699795498372690253040182018, −5.51700652968924302243666686000, −5.06816699709763172518015467504, −5.02011044839378537216726805350, −4.99486295131559950778141150225, −4.49517242692864748899786132279, −4.12663462674993278134103642721, −4.06186531403159952222565163371, −4.02487493966216550249959192141, −3.93534756426053421465410465936, −3.65639697030646127513698771091, −3.55612899544479759184163460845, −3.41765566975277048208790339315, −3.10648689350912656989694630407, −2.45630345460003225869083086521, −2.21769598878851124827386249683, −2.00370362099285550622550028097, −1.55079578150419719949774376287, −1.48755455653452536025097078877, −1.16451097523120678313979026605, −0.913512058416947344120449872157, 0.913512058416947344120449872157, 1.16451097523120678313979026605, 1.48755455653452536025097078877, 1.55079578150419719949774376287, 2.00370362099285550622550028097, 2.21769598878851124827386249683, 2.45630345460003225869083086521, 3.10648689350912656989694630407, 3.41765566975277048208790339315, 3.55612899544479759184163460845, 3.65639697030646127513698771091, 3.93534756426053421465410465936, 4.02487493966216550249959192141, 4.06186531403159952222565163371, 4.12663462674993278134103642721, 4.49517242692864748899786132279, 4.99486295131559950778141150225, 5.02011044839378537216726805350, 5.06816699709763172518015467504, 5.51700652968924302243666686000, 5.67699795498372690253040182018, 5.96606895551648770807377357818, 6.22579924089976122148137893873, 6.38007336214568427242312476651, 6.41521777442232251601523839744

Graph of the $Z$-function along the critical line