Properties

Label 10-871e5-871.870-c0e5-0-0
Degree 1010
Conductor 5.013×10145.013\times 10^{14}
Sign 11
Analytic cond. 0.01551940.0155194
Root an. cond. 0.6593060.659306
Motivic weight 00
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 5-s − 7-s + 5·9-s + 10-s − 11-s + 5·13-s + 14-s − 17-s − 5·18-s + 22-s − 23-s − 5·26-s − 29-s − 31-s + 34-s + 35-s − 41-s − 5·45-s + 46-s + 55-s + 58-s + 62-s − 5·63-s − 5·65-s + 5·67-s − 70-s + ⋯
L(s)  = 1  − 2-s − 5-s − 7-s + 5·9-s + 10-s − 11-s + 5·13-s + 14-s − 17-s − 5·18-s + 22-s − 23-s − 5·26-s − 29-s − 31-s + 34-s + 35-s − 41-s − 5·45-s + 46-s + 55-s + 58-s + 62-s − 5·63-s − 5·65-s + 5·67-s − 70-s + ⋯

Functional equation

Λ(s)=((135675)s/2ΓC(s)5L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(13^{5} \cdot 67^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}
Λ(s)=((135675)s/2ΓC(s)5L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(13^{5} \cdot 67^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 1010
Conductor: 13567513^{5} \cdot 67^{5}
Sign: 11
Analytic conductor: 0.01551940.0155194
Root analytic conductor: 0.6593060.659306
Motivic weight: 00
Rational: yes
Arithmetic: yes
Character: induced by χ871(870,)\chi_{871} (870, \cdot )
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (10, 135675, ( :0,0,0,0,0), 1)(10,\ 13^{5} \cdot 67^{5} ,\ ( \ : 0, 0, 0, 0, 0 ),\ 1 )

Particular Values

L(12)L(\frac{1}{2}) \approx 0.50508034890.5050803489
L(12)L(\frac12) \approx 0.50508034890.5050803489
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad13C1C_1 (1T)5 ( 1 - T )^{5}
67C1C_1 (1T)5 ( 1 - T )^{5}
good2C10C_{10} 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10}
3C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
5C10C_{10} 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10}
7C10C_{10} 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10}
11C10C_{10} 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10}
17C10C_{10} 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10}
19C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
23C10C_{10} 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10}
29C10C_{10} 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10}
31C10C_{10} 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10}
37C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
41C10C_{10} 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10}
43C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
47C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
53C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
59C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
61C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
71C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
73C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
79C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
83C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
89C1C_1×\timesC1C_1 (1T)5(1+T)5 ( 1 - T )^{5}( 1 + T )^{5}
97C10C_{10} 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10}
show more
show less
   L(s)=p j=110(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−6.41521777442232251601523839744, −6.38007336214568427242312476651, −6.22579924089976122148137893873, −5.96606895551648770807377357818, −5.67699795498372690253040182018, −5.51700652968924302243666686000, −5.06816699709763172518015467504, −5.02011044839378537216726805350, −4.99486295131559950778141150225, −4.49517242692864748899786132279, −4.12663462674993278134103642721, −4.06186531403159952222565163371, −4.02487493966216550249959192141, −3.93534756426053421465410465936, −3.65639697030646127513698771091, −3.55612899544479759184163460845, −3.41765566975277048208790339315, −3.10648689350912656989694630407, −2.45630345460003225869083086521, −2.21769598878851124827386249683, −2.00370362099285550622550028097, −1.55079578150419719949774376287, −1.48755455653452536025097078877, −1.16451097523120678313979026605, −0.913512058416947344120449872157, 0.913512058416947344120449872157, 1.16451097523120678313979026605, 1.48755455653452536025097078877, 1.55079578150419719949774376287, 2.00370362099285550622550028097, 2.21769598878851124827386249683, 2.45630345460003225869083086521, 3.10648689350912656989694630407, 3.41765566975277048208790339315, 3.55612899544479759184163460845, 3.65639697030646127513698771091, 3.93534756426053421465410465936, 4.02487493966216550249959192141, 4.06186531403159952222565163371, 4.12663462674993278134103642721, 4.49517242692864748899786132279, 4.99486295131559950778141150225, 5.02011044839378537216726805350, 5.06816699709763172518015467504, 5.51700652968924302243666686000, 5.67699795498372690253040182018, 5.96606895551648770807377357818, 6.22579924089976122148137893873, 6.38007336214568427242312476651, 6.41521777442232251601523839744

Graph of the ZZ-function along the critical line