L(s) = 1 | − 2-s − 5-s − 7-s + 5·9-s + 10-s − 11-s + 5·13-s + 14-s − 17-s − 5·18-s + 22-s − 23-s − 5·26-s − 29-s − 31-s + 34-s + 35-s − 41-s − 5·45-s + 46-s + 55-s + 58-s + 62-s − 5·63-s − 5·65-s + 5·67-s − 70-s + ⋯ |
L(s) = 1 | − 2-s − 5-s − 7-s + 5·9-s + 10-s − 11-s + 5·13-s + 14-s − 17-s − 5·18-s + 22-s − 23-s − 5·26-s − 29-s − 31-s + 34-s + 35-s − 41-s − 5·45-s + 46-s + 55-s + 58-s + 62-s − 5·63-s − 5·65-s + 5·67-s − 70-s + ⋯ |
Λ(s)=(=((135⋅675)s/2ΓC(s)5L(s)Λ(1−s)
Λ(s)=(=((135⋅675)s/2ΓC(s)5L(s)Λ(1−s)
Degree: |
10 |
Conductor: |
135⋅675
|
Sign: |
1
|
Analytic conductor: |
0.0155194 |
Root analytic conductor: |
0.659306 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
induced by χ871(870,⋅)
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(10, 135⋅675, ( :0,0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.5050803489 |
L(21) |
≈ |
0.5050803489 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 13 | C1 | (1−T)5 |
| 67 | C1 | (1−T)5 |
good | 2 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 3 | C1×C1 | (1−T)5(1+T)5 |
| 5 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 7 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 11 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 17 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 19 | C1×C1 | (1−T)5(1+T)5 |
| 23 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 29 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 31 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 37 | C1×C1 | (1−T)5(1+T)5 |
| 41 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 43 | C1×C1 | (1−T)5(1+T)5 |
| 47 | C1×C1 | (1−T)5(1+T)5 |
| 53 | C1×C1 | (1−T)5(1+T)5 |
| 59 | C1×C1 | (1−T)5(1+T)5 |
| 61 | C1×C1 | (1−T)5(1+T)5 |
| 71 | C1×C1 | (1−T)5(1+T)5 |
| 73 | C1×C1 | (1−T)5(1+T)5 |
| 79 | C1×C1 | (1−T)5(1+T)5 |
| 83 | C1×C1 | (1−T)5(1+T)5 |
| 89 | C1×C1 | (1−T)5(1+T)5 |
| 97 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
show more | | |
show less | | |
L(s)=p∏ j=1∏10(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.41521777442232251601523839744, −6.38007336214568427242312476651, −6.22579924089976122148137893873, −5.96606895551648770807377357818, −5.67699795498372690253040182018, −5.51700652968924302243666686000, −5.06816699709763172518015467504, −5.02011044839378537216726805350, −4.99486295131559950778141150225, −4.49517242692864748899786132279, −4.12663462674993278134103642721, −4.06186531403159952222565163371, −4.02487493966216550249959192141, −3.93534756426053421465410465936, −3.65639697030646127513698771091, −3.55612899544479759184163460845, −3.41765566975277048208790339315, −3.10648689350912656989694630407, −2.45630345460003225869083086521, −2.21769598878851124827386249683, −2.00370362099285550622550028097, −1.55079578150419719949774376287, −1.48755455653452536025097078877, −1.16451097523120678313979026605, −0.913512058416947344120449872157,
0.913512058416947344120449872157, 1.16451097523120678313979026605, 1.48755455653452536025097078877, 1.55079578150419719949774376287, 2.00370362099285550622550028097, 2.21769598878851124827386249683, 2.45630345460003225869083086521, 3.10648689350912656989694630407, 3.41765566975277048208790339315, 3.55612899544479759184163460845, 3.65639697030646127513698771091, 3.93534756426053421465410465936, 4.02487493966216550249959192141, 4.06186531403159952222565163371, 4.12663462674993278134103642721, 4.49517242692864748899786132279, 4.99486295131559950778141150225, 5.02011044839378537216726805350, 5.06816699709763172518015467504, 5.51700652968924302243666686000, 5.67699795498372690253040182018, 5.96606895551648770807377357818, 6.22579924089976122148137893873, 6.38007336214568427242312476651, 6.41521777442232251601523839744