L(s) = 1 | + (−1.88 − 0.656i)2-s + (3.13 + 2.48i)4-s + 9.55i·7-s + (−4.29 − 6.74i)8-s − 9.92i·11-s + 7.55·13-s + (6.27 − 18.0i)14-s + (3.68 + 15.5i)16-s − 17.1·17-s − 26.1i·19-s + (−6.51 + 18.7i)22-s − 1.67i·23-s + (−14.2 − 4.96i)26-s + (−23.7 + 29.9i)28-s − 0.350·29-s + ⋯ |
L(s) = 1 | + (−0.944 − 0.328i)2-s + (0.784 + 0.620i)4-s + 1.36i·7-s + (−0.537 − 0.843i)8-s − 0.902i·11-s + 0.581·13-s + (0.448 − 1.28i)14-s + (0.230 + 0.973i)16-s − 1.01·17-s − 1.37i·19-s + (−0.296 + 0.852i)22-s − 0.0728i·23-s + (−0.549 − 0.190i)26-s + (−0.846 + 1.07i)28-s − 0.0120·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.784 + 0.620i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.784 + 0.620i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.087357886\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.087357886\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.88 + 0.656i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 9.55iT - 49T^{2} \) |
| 11 | \( 1 + 9.92iT - 121T^{2} \) |
| 13 | \( 1 - 7.55T + 169T^{2} \) |
| 17 | \( 1 + 17.1T + 289T^{2} \) |
| 19 | \( 1 + 26.1iT - 361T^{2} \) |
| 23 | \( 1 + 1.67iT - 529T^{2} \) |
| 29 | \( 1 + 0.350T + 841T^{2} \) |
| 31 | \( 1 + 46.0iT - 961T^{2} \) |
| 37 | \( 1 - 22.6T + 1.36e3T^{2} \) |
| 41 | \( 1 - 77.2T + 1.68e3T^{2} \) |
| 43 | \( 1 - 41.7iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 14.0iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 22.6T + 2.80e3T^{2} \) |
| 59 | \( 1 - 94.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 38T + 3.72e3T^{2} \) |
| 67 | \( 1 + 29.8iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 7.19iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 34.3T + 5.32e3T^{2} \) |
| 79 | \( 1 + 46.0iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 24.1iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 100.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 131.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.538077635240635040925714391660, −8.979736285446396731801123147997, −8.473378721860197963952751595772, −7.49651789321017337114984498358, −6.34752656399655366735056820129, −5.79379877256016224796386257886, −4.30558040152658546875072855991, −2.92654967417108582808778005015, −2.24128539856652001439522403224, −0.63002657282161331124517376345,
0.930180732333855723406099353226, 2.05380394721228895367701701299, 3.65677442405944444768660172582, 4.68515074526163125301577157701, 5.96401890059478396367383555872, 6.85029564645662835919929359725, 7.45713915784073457767922091252, 8.262605823133334175552422029083, 9.183478627387099924836068328227, 10.05567556398618387552699255231