Properties

Label 2-96e2-1.1-c1-0-6
Degree $2$
Conductor $9216$
Sign $1$
Analytic cond. $73.5901$
Root an. cond. $8.57846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.46·5-s − 1.41·7-s − 4.89·11-s + 1.41·13-s − 4.89·17-s + 6·19-s − 6.92·23-s + 6.99·25-s + 3.46·29-s + 1.41·31-s + 4.89·35-s − 9.89·37-s − 4.89·41-s + 6·43-s − 6.92·47-s − 5·49-s − 3.46·53-s + 16.9·55-s − 9.79·59-s − 7.07·61-s − 4.89·65-s − 8·67-s − 13.8·71-s − 12·73-s + 6.92·77-s − 15.5·79-s + 14.6·83-s + ⋯
L(s)  = 1  − 1.54·5-s − 0.534·7-s − 1.47·11-s + 0.392·13-s − 1.18·17-s + 1.37·19-s − 1.44·23-s + 1.39·25-s + 0.643·29-s + 0.254·31-s + 0.828·35-s − 1.62·37-s − 0.765·41-s + 0.914·43-s − 1.01·47-s − 0.714·49-s − 0.475·53-s + 2.28·55-s − 1.27·59-s − 0.905·61-s − 0.607·65-s − 0.977·67-s − 1.64·71-s − 1.40·73-s + 0.789·77-s − 1.75·79-s + 1.61·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9216\)    =    \(2^{10} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(73.5901\)
Root analytic conductor: \(8.57846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9216,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2442425263\)
\(L(\frac12)\) \(\approx\) \(0.2442425263\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 3.46T + 5T^{2} \)
7 \( 1 + 1.41T + 7T^{2} \)
11 \( 1 + 4.89T + 11T^{2} \)
13 \( 1 - 1.41T + 13T^{2} \)
17 \( 1 + 4.89T + 17T^{2} \)
19 \( 1 - 6T + 19T^{2} \)
23 \( 1 + 6.92T + 23T^{2} \)
29 \( 1 - 3.46T + 29T^{2} \)
31 \( 1 - 1.41T + 31T^{2} \)
37 \( 1 + 9.89T + 37T^{2} \)
41 \( 1 + 4.89T + 41T^{2} \)
43 \( 1 - 6T + 43T^{2} \)
47 \( 1 + 6.92T + 47T^{2} \)
53 \( 1 + 3.46T + 53T^{2} \)
59 \( 1 + 9.79T + 59T^{2} \)
61 \( 1 + 7.07T + 61T^{2} \)
67 \( 1 + 8T + 67T^{2} \)
71 \( 1 + 13.8T + 71T^{2} \)
73 \( 1 + 12T + 73T^{2} \)
79 \( 1 + 15.5T + 79T^{2} \)
83 \( 1 - 14.6T + 83T^{2} \)
89 \( 1 + 9.79T + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63847141098529970365687474861, −7.28447967782485622908951424518, −6.41347043882812086622548276824, −5.67123945184384133351757331369, −4.74676703819523217533383360100, −4.30387988848262538151909509128, −3.24572694440190953289802574550, −3.01535763761885825616107218715, −1.71158503995434411321969205045, −0.22855338159461432523021291804, 0.22855338159461432523021291804, 1.71158503995434411321969205045, 3.01535763761885825616107218715, 3.24572694440190953289802574550, 4.30387988848262538151909509128, 4.74676703819523217533383360100, 5.67123945184384133351757331369, 6.41347043882812086622548276824, 7.28447967782485622908951424518, 7.63847141098529970365687474861

Graph of the $Z$-function along the critical line