L(s) = 1 | − 0.678·5-s + (−0.160 − 0.278i)7-s + (−2.10 + 3.65i)11-s + (−2.28 − 2.78i)13-s + (1.76 + 3.06i)17-s + (2.10 + 3.65i)19-s + (−0.787 + 1.36i)23-s − 4.53·25-s + (−4.55 + 7.89i)29-s + 2.53·31-s + (0.109 + 0.188i)35-s + (0.0175 − 0.0303i)37-s + (−1.12 + 1.95i)41-s + (3.37 + 5.85i)43-s − 5.57·47-s + ⋯ |
L(s) = 1 | − 0.303·5-s + (−0.0607 − 0.105i)7-s + (−0.635 + 1.10i)11-s + (−0.634 − 0.772i)13-s + (0.429 + 0.743i)17-s + (0.483 + 0.838i)19-s + (−0.164 + 0.284i)23-s − 0.907·25-s + (−0.846 + 1.46i)29-s + 0.456·31-s + (0.0184 + 0.0319i)35-s + (0.00288 − 0.00499i)37-s + (−0.175 + 0.304i)41-s + (0.515 + 0.892i)43-s − 0.813·47-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(−0.406−0.913i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(−0.406−0.913i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
−0.406−0.913i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(217,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), −0.406−0.913i)
|
Particular Values
L(1) |
≈ |
0.453273+0.698114i |
L(21) |
≈ |
0.453273+0.698114i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(2.28+2.78i)T |
good | 5 | 1+0.678T+5T2 |
| 7 | 1+(0.160+0.278i)T+(−3.5+6.06i)T2 |
| 11 | 1+(2.10−3.65i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−1.76−3.06i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.10−3.65i)T+(−9.5+16.4i)T2 |
| 23 | 1+(0.787−1.36i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.55−7.89i)T+(−14.5−25.1i)T2 |
| 31 | 1−2.53T+31T2 |
| 37 | 1+(−0.0175+0.0303i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.12−1.95i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−3.37−5.85i)T+(−21.5+37.2i)T2 |
| 47 | 1+5.57T+47T2 |
| 53 | 1+4.67T+53T2 |
| 59 | 1+(−4.86−8.42i)T+(−29.5+51.0i)T2 |
| 61 | 1+(2.96+5.13i)T+(−30.5+52.8i)T2 |
| 67 | 1+(6.41−11.1i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−4.78−8.29i)T+(−35.5+61.4i)T2 |
| 73 | 1+6.07T+73T2 |
| 79 | 1−4.61T+79T2 |
| 83 | 1+10.9T+83T2 |
| 89 | 1+(2−3.46i)T+(−44.5−77.0i)T2 |
| 97 | 1+(2.94+5.10i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.02468921750897213226898855822, −9.877957212312692523945181371867, −8.510789710198369306516934091284, −7.69066754188397852718192812771, −7.21020069800876697642296604161, −5.88610601254053390732483677958, −5.12428513109502511531692792234, −4.04777711705201069131632371100, −3.00151211257813740737618810884, −1.65030309417744172783924293998,
0.37981173124376751830964265212, 2.28432816658805819803791747962, 3.32342004773158713377004769434, 4.47198010119208306927467564107, 5.42853341579840920350056730167, 6.31888514369639979607512170558, 7.42129307474540474511439161870, 7.989907123332332146607987413331, 9.068381679592105364161473617464, 9.680335358394015971167410870514