L(s) = 1 | + (−0.746 − 2.29i)2-s + (0.746 − 2.29i)3-s + (−3.09 + 2.25i)4-s + 5-s − 5.82·6-s + (−1.95 + 1.41i)7-s + (3.57 + 2.59i)8-s + (−2.28 − 1.66i)9-s + (−0.746 − 2.29i)10-s + (−4.24 + 3.08i)11-s + (2.85 + 8.79i)12-s + (−0.565 + 1.73i)13-s + (4.71 + 3.42i)14-s + (0.746 − 2.29i)15-s + (0.927 − 2.85i)16-s + (−0.138 − 0.100i)17-s + ⋯ |
L(s) = 1 | + (−0.527 − 1.62i)2-s + (0.430 − 1.32i)3-s + (−1.54 + 1.12i)4-s + 0.447·5-s − 2.37·6-s + (−0.738 + 0.536i)7-s + (1.26 + 0.917i)8-s + (−0.762 − 0.554i)9-s + (−0.235 − 0.726i)10-s + (−1.27 + 0.929i)11-s + (0.824 + 2.53i)12-s + (−0.156 + 0.482i)13-s + (1.26 + 0.915i)14-s + (0.192 − 0.592i)15-s + (0.231 − 0.713i)16-s + (−0.0336 − 0.0244i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0296i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0296i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.256756 - 0.00380512i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.256756 - 0.00380512i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (0.746 + 2.29i)T + (-1.61 + 1.17i)T^{2} \) |
| 3 | \( 1 + (-0.746 + 2.29i)T + (-2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 - T + 5T^{2} \) |
| 7 | \( 1 + (1.95 - 1.41i)T + (2.16 - 6.65i)T^{2} \) |
| 11 | \( 1 + (4.24 - 3.08i)T + (3.39 - 10.4i)T^{2} \) |
| 13 | \( 1 + (0.565 - 1.73i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (0.138 + 0.100i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.490 - 1.50i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (3.23 + 2.35i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (-0.362 - 1.11i)T + (-23.4 + 17.0i)T^{2} \) |
| 37 | \( 1 + T + 37T^{2} \) |
| 41 | \( 1 + (-2.93 - 9.02i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + (2.75 + 8.46i)T + (-34.7 + 25.2i)T^{2} \) |
| 47 | \( 1 + (0.511 - 1.57i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.138 - 0.100i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (3.11 - 9.57i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + 2.82T + 61T^{2} \) |
| 67 | \( 1 + 5.24T + 67T^{2} \) |
| 71 | \( 1 + (-11.3 - 8.27i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-3.09 + 2.25i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (12.3 + 8.95i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (1.25 + 3.87i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + (10.1 - 7.33i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (8.76 - 6.36i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.956416828527864287533653865730, −9.466810580449735371250904227570, −8.475282457006405801629168186986, −7.79666650643425049998252879498, −6.82891367774847080479219380476, −5.77166632157364817100277335783, −4.36466186639473103709760481876, −2.93664624550242929592999052010, −2.33920794356340236606440686716, −1.58562171812125841949779020464,
0.12872691484090804017722086150, 2.91045123429347156003971823042, 3.96343562414858544794805002969, 5.13420633684413546295092471172, 5.68131302402784428476655008613, 6.61174861870391128685084160970, 7.70412079685093600667913423973, 8.281722112673303899751569282688, 9.193595415850191604720973124334, 9.837041555468624982542413571152