L(s) = 1 | + (−0.213 − 0.655i)2-s + (0.278 − 0.858i)3-s + (1.23 − 0.896i)4-s + 3.70·5-s − 0.622·6-s + (−0.617 + 0.448i)7-s + (−1.96 − 1.42i)8-s + (1.76 + 1.28i)9-s + (−0.789 − 2.43i)10-s + (−3.32 + 2.41i)11-s + (−0.425 − 1.30i)12-s + (0.899 − 2.76i)13-s + (0.425 + 0.309i)14-s + (1.03 − 3.18i)15-s + (0.424 − 1.30i)16-s + (1.05 + 0.769i)17-s + ⋯ |
L(s) = 1 | + (−0.150 − 0.463i)2-s + (0.160 − 0.495i)3-s + (0.616 − 0.448i)4-s + 1.65·5-s − 0.254·6-s + (−0.233 + 0.169i)7-s + (−0.695 − 0.505i)8-s + (0.589 + 0.428i)9-s + (−0.249 − 0.768i)10-s + (−1.00 + 0.729i)11-s + (−0.122 − 0.377i)12-s + (0.249 − 0.767i)13-s + (0.113 + 0.0826i)14-s + (0.266 − 0.821i)15-s + (0.106 − 0.326i)16-s + (0.256 + 0.186i)17-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)(0.0525+0.998i)Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)(0.0525+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
961
= 312
|
Sign: |
0.0525+0.998i
|
Analytic conductor: |
7.67362 |
Root analytic conductor: |
2.77013 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ961(531,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 961, ( :1/2), 0.0525+0.998i)
|
Particular Values
L(1) |
≈ |
1.68571−1.59937i |
L(21) |
≈ |
1.68571−1.59937i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1+(0.213+0.655i)T+(−1.61+1.17i)T2 |
| 3 | 1+(−0.278+0.858i)T+(−2.42−1.76i)T2 |
| 5 | 1−3.70T+5T2 |
| 7 | 1+(0.617−0.448i)T+(2.16−6.65i)T2 |
| 11 | 1+(3.32−2.41i)T+(3.39−10.4i)T2 |
| 13 | 1+(−0.899+2.76i)T+(−10.5−7.64i)T2 |
| 17 | 1+(−1.05−0.769i)T+(5.25+16.1i)T2 |
| 19 | 1+(1.17+3.61i)T+(−15.3+11.1i)T2 |
| 23 | 1+(2.65+1.92i)T+(7.10+21.8i)T2 |
| 29 | 1+(1.51+4.65i)T+(−23.4+17.0i)T2 |
| 37 | 1−10.4T+37T2 |
| 41 | 1+(−0.233−0.718i)T+(−33.1+24.0i)T2 |
| 43 | 1+(−2.21−6.80i)T+(−34.7+25.2i)T2 |
| 47 | 1+(0.270−0.833i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−2.89−2.10i)T+(16.3+50.4i)T2 |
| 59 | 1+(−0.286+0.881i)T+(−47.7−34.6i)T2 |
| 61 | 1+2.31T+61T2 |
| 67 | 1+2.08T+67T2 |
| 71 | 1+(−6.25−4.54i)T+(21.9+67.5i)T2 |
| 73 | 1+(4.57−3.32i)T+(22.5−69.4i)T2 |
| 79 | 1+(11.4+8.28i)T+(24.4+75.1i)T2 |
| 83 | 1+(−4.35−13.4i)T+(−67.1+48.7i)T2 |
| 89 | 1+(3.58−2.60i)T+(27.5−84.6i)T2 |
| 97 | 1+(−4.26+3.10i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.915757306564232011238613297360, −9.422816833548723504795657072614, −8.095233880530206128673800976436, −7.22711210637073110943246270863, −6.24645620934715100742675047151, −5.75696105920472299166796201272, −4.67558544588175958104240677240, −2.65669696452825218333135857135, −2.33626463801953113023479446943, −1.20402119077108884747539040169,
1.72099140785476511691342866512, 2.80514261730175530961083396966, 3.85026470887513976802235809849, 5.31508189739776233501043310088, 6.02290983632533836622970562626, 6.69429815590218498977403454789, 7.65836006279002550622636081016, 8.689182443546172184743006138482, 9.383091852239930357484920336707, 10.16228516421618274233802459782