L(s) = 1 | + (−1.34 − 0.437i)2-s + (−0.0359 + 0.0261i)3-s + (1.61 + 1.17i)4-s + (0.0598 − 0.0194i)6-s + (−1.66 − 2.28i)8-s + (−0.926 + 2.85i)9-s − 0.0889·12-s + (1.23 + 3.80i)16-s + (−3.76 + 1.22i)17-s + (2.49 − 3.43i)18-s + (−2.65 − 3.66i)19-s + (0.119 + 0.0388i)24-s + (−4.04 + 2.93i)25-s + (−0.0824 − 0.253i)27-s − 5.65i·32-s + ⋯ |
L(s) = 1 | + (−0.951 − 0.309i)2-s + (−0.0207 + 0.0150i)3-s + (0.809 + 0.587i)4-s + (0.0244 − 0.00793i)6-s + (−0.587 − 0.809i)8-s + (−0.308 + 0.950i)9-s − 0.0256·12-s + (0.309 + 0.951i)16-s + (−0.913 + 0.296i)17-s + (0.587 − 0.808i)18-s + (−0.610 − 0.839i)19-s + (0.0244 + 0.00793i)24-s + (−0.809 + 0.587i)25-s + (−0.0158 − 0.0488i)27-s − 1.00i·32-s + ⋯ |
Λ(s)=(=(968s/2ΓC(s)L(s)(−0.909−0.416i)Λ(2−s)
Λ(s)=(=(968s/2ΓC(s+1/2)L(s)(−0.909−0.416i)Λ(1−s)
Degree: |
2 |
Conductor: |
968
= 23⋅112
|
Sign: |
−0.909−0.416i
|
Analytic conductor: |
7.72951 |
Root analytic conductor: |
2.78020 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ968(475,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 968, ( :1/2), −0.909−0.416i)
|
Particular Values
L(1) |
≈ |
0.0381804+0.175068i |
L(21) |
≈ |
0.0381804+0.175068i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.34+0.437i)T |
| 11 | 1 |
good | 3 | 1+(0.0359−0.0261i)T+(0.927−2.85i)T2 |
| 5 | 1+(4.04−2.93i)T2 |
| 7 | 1+(2.16+6.65i)T2 |
| 13 | 1+(−10.5−7.64i)T2 |
| 17 | 1+(3.76−1.22i)T+(13.7−9.99i)T2 |
| 19 | 1+(2.65+3.66i)T+(−5.87+18.0i)T2 |
| 23 | 1−23T2 |
| 29 | 1+(8.96+27.5i)T2 |
| 31 | 1+(25.0+18.2i)T2 |
| 37 | 1+(−11.4−35.1i)T2 |
| 41 | 1+(7.45+10.2i)T+(−12.6+38.9i)T2 |
| 43 | 1−12.7iT−43T2 |
| 47 | 1+(−14.5+44.6i)T2 |
| 53 | 1+(42.8+31.1i)T2 |
| 59 | 1+(9.38+6.81i)T+(18.2+56.1i)T2 |
| 61 | 1+(−49.3+35.8i)T2 |
| 67 | 1−12.3T+67T2 |
| 71 | 1+(57.4−41.7i)T2 |
| 73 | 1+(7.37−10.1i)T+(−22.5−69.4i)T2 |
| 79 | 1+(−63.9−46.4i)T2 |
| 83 | 1+(12.2−3.97i)T+(67.1−48.7i)T2 |
| 89 | 1+17.8T+89T2 |
| 97 | 1+(5.58−17.1i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37530492563879473086764010716, −9.544209524046389047759754334694, −8.675746660451813013180675088032, −8.095241886814141247249405871781, −7.16099410842319220092261860553, −6.36796155191010471947336625734, −5.19068869853605385350088027700, −3.99609730131615657956111421278, −2.70595147384849362482474060645, −1.78583644548192812089567404171,
0.10649088180158756138715827104, 1.71939691483490035977783903654, 2.99654650048010015027728634458, 4.31217694260404641171611152605, 5.68058520119245833170905205859, 6.37345876487170036472002987761, 7.12159486820145165426833879927, 8.183810376307093680571869611593, 8.768043636578451530712067860290, 9.604410166728345718024155946245