L(s) = 1 | + (−1.37 + 0.334i)2-s + (−1.22 + 0.397i)3-s + (1.77 − 0.918i)4-s + (0.929 − 1.27i)5-s + (1.54 − 0.955i)6-s + (0.577 − 1.77i)7-s + (−2.13 + 1.85i)8-s + (−1.08 + 0.790i)9-s + (−0.849 + 2.06i)10-s + (−1.80 + 1.83i)12-s + (−0.189 − 0.260i)13-s + (−0.199 + 2.63i)14-s + (−0.628 + 1.93i)15-s + (2.31 − 3.26i)16-s + (3.87 + 2.81i)17-s + (1.23 − 1.45i)18-s + ⋯ |
L(s) = 1 | + (−0.971 + 0.236i)2-s + (−0.706 + 0.229i)3-s + (0.888 − 0.459i)4-s + (0.415 − 0.572i)5-s + (0.632 − 0.389i)6-s + (0.218 − 0.671i)7-s + (−0.754 + 0.656i)8-s + (−0.362 + 0.263i)9-s + (−0.268 + 0.654i)10-s + (−0.521 + 0.528i)12-s + (−0.0525 − 0.0722i)13-s + (−0.0532 + 0.704i)14-s + (−0.162 + 0.499i)15-s + (0.577 − 0.816i)16-s + (0.940 + 0.683i)17-s + (0.290 − 0.341i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.721824 - 0.298950i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.721824 - 0.298950i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.37 - 0.334i)T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (1.22 - 0.397i)T + (2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + (-0.929 + 1.27i)T + (-1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.577 + 1.77i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (0.189 + 0.260i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-3.87 - 2.81i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-3.22 + 1.04i)T + (15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 3.08T + 23T^{2} \) |
| 29 | \( 1 + (9.90 + 3.21i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-2.28 + 1.65i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (3.39 + 1.10i)T + (29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.39 - 4.27i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 3.61iT - 43T^{2} \) |
| 47 | \( 1 + (3.93 + 12.1i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (3.32 + 4.57i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-5.12 - 1.66i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-6.42 + 8.84i)T + (-18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 10.9iT - 67T^{2} \) |
| 71 | \( 1 + (-9.00 - 6.54i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-3.89 + 11.9i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-4.83 + 3.51i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (0.0820 - 0.112i)T + (-25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 4.28T + 89T^{2} \) |
| 97 | \( 1 + (10.0 - 7.28i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.876003679766267245231136092605, −9.211162852983583356613050615019, −8.205728352752561187588838876238, −7.55194283751180264695803021388, −6.55023489300752846213743099807, −5.51611791608377266904299253926, −5.12415627827339486400336496780, −3.51381552446040996960325529039, −1.90818653350507229360279560584, −0.65102578199190627251210137489,
1.12025577800242444067378642598, 2.51722515151902376779830726024, 3.39120656296870578688432184577, 5.28824531716374325598090559044, 5.92376619987178076380689537366, 6.84973891097074301313989796758, 7.54259426575921342946728438833, 8.615955098697171781244421712451, 9.365393811473010950977652436505, 10.06761948422556487933971467504