L(s) = 1 | + (−0.336 − 1.58i)2-s + (−0.994 − 0.104i)3-s + (−1.47 + 0.658i)4-s + (−0.951 − 0.309i)5-s + (0.169 + 1.60i)6-s + (−0.5 + 0.866i)7-s + (0.587 + 0.809i)8-s + (0.978 + 0.207i)9-s + (−0.169 + 1.60i)10-s + (0.336 + 1.58i)11-s + (1.53 − 0.500i)12-s + (−0.309 − 0.951i)13-s + (1.53 + 0.5i)14-s + (0.913 + 0.406i)15-s + (0.994 − 0.104i)17-s − 1.61i·18-s + ⋯ |
L(s) = 1 | + (−0.336 − 1.58i)2-s + (−0.994 − 0.104i)3-s + (−1.47 + 0.658i)4-s + (−0.951 − 0.309i)5-s + (0.169 + 1.60i)6-s + (−0.5 + 0.866i)7-s + (0.587 + 0.809i)8-s + (0.978 + 0.207i)9-s + (−0.169 + 1.60i)10-s + (0.336 + 1.58i)11-s + (1.53 − 0.500i)12-s + (−0.309 − 0.951i)13-s + (1.53 + 0.5i)14-s + (0.913 + 0.406i)15-s + (0.994 − 0.104i)17-s − 1.61i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.666 + 0.745i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.666 + 0.745i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3936906257\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3936906257\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.994 + 0.104i)T \) |
| 5 | \( 1 + (0.951 + 0.309i)T \) |
| 13 | \( 1 + (0.309 + 0.951i)T \) |
good | 2 | \( 1 + (0.336 + 1.58i)T + (-0.913 + 0.406i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.336 - 1.58i)T + (-0.913 + 0.406i)T^{2} \) |
| 17 | \( 1 + (-0.994 + 0.104i)T + (0.978 - 0.207i)T^{2} \) |
| 19 | \( 1 + (0.104 + 0.994i)T + (-0.978 + 0.207i)T^{2} \) |
| 23 | \( 1 + (-0.207 - 0.978i)T + (-0.913 + 0.406i)T^{2} \) |
| 29 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 31 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (0.669 - 0.743i)T + (-0.104 - 0.994i)T^{2} \) |
| 41 | \( 1 + (-0.743 - 0.669i)T + (0.104 + 0.994i)T^{2} \) |
| 43 | \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.363 + 0.5i)T + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.951 + 1.30i)T + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.207 - 0.978i)T + (-0.913 - 0.406i)T^{2} \) |
| 61 | \( 1 + (-0.669 - 0.743i)T + (-0.104 + 0.994i)T^{2} \) |
| 67 | \( 1 + (-0.564 - 0.251i)T + (0.669 + 0.743i)T^{2} \) |
| 71 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 73 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.587 - 0.809i)T + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + (0.207 + 0.978i)T + (-0.913 + 0.406i)T^{2} \) |
| 97 | \( 1 + (0.564 - 0.251i)T + (0.669 - 0.743i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07772362570948011216469299322, −9.712143727442945446840982550378, −8.780644783469783720315489146449, −7.64335022113413495607633950395, −6.84186306335207378139969483829, −5.42743330709831424283992965864, −4.66814402765402721545781717179, −3.64973866348827196999594344683, −2.53951155992785152572156175193, −1.13196662942483660386211885773,
0.59673232488924915026610090919, 3.58338542008344197855809495693, 4.31188815911169260511827188264, 5.49915788836550868382995697518, 6.25708950470503124053817496126, 6.90064041338982309005577199904, 7.54515359227771160335180195390, 8.385155799029680763468808473344, 9.285181936765046980520572546588, 10.33544466685897194538716481888