L(s) = 1 | + (1.22 − 1.22i)3-s + 2i·4-s + (−2.54 − 2.54i)7-s − 2.99i·9-s − 6.24·11-s + (2.44 + 2.44i)12-s + (2.54 − 2.54i)13-s − 4·16-s + (−1.22 − 1.22i)17-s − 6.24·21-s + (−3.67 + 3.67i)23-s + (−3.67 − 3.67i)27-s + (5.09 − 5.09i)28-s + (−7.64 + 7.64i)33-s + 5.99·36-s + (−2.54 − 2.54i)37-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)3-s + i·4-s + (−0.963 − 0.963i)7-s − 0.999i·9-s − 1.88·11-s + (0.707 + 0.707i)12-s + (0.707 − 0.707i)13-s − 16-s + (−0.297 − 0.297i)17-s − 1.36·21-s + (−0.766 + 0.766i)23-s + (−0.707 − 0.707i)27-s + (0.963 − 0.963i)28-s + (−1.33 + 1.33i)33-s + 0.999·36-s + (−0.419 − 0.419i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.850 + 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.209221 - 0.736491i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.209221 - 0.736491i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.22 + 1.22i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-2.54 + 2.54i)T \) |
good | 2 | \( 1 - 2iT^{2} \) |
| 7 | \( 1 + (2.54 + 2.54i)T + 7iT^{2} \) |
| 11 | \( 1 + 6.24T + 11T^{2} \) |
| 17 | \( 1 + (1.22 + 1.22i)T + 17iT^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (3.67 - 3.67i)T - 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + (2.54 + 2.54i)T + 37iT^{2} \) |
| 41 | \( 1 + 6.24T + 41T^{2} \) |
| 43 | \( 1 + 43iT^{2} \) |
| 47 | \( 1 - 47iT^{2} \) |
| 53 | \( 1 + (-8.57 + 8.57i)T - 53iT^{2} \) |
| 59 | \( 1 + 12.4iT - 59T^{2} \) |
| 61 | \( 1 - 7T + 61T^{2} \) |
| 67 | \( 1 + (-10.1 - 10.1i)T + 67iT^{2} \) |
| 71 | \( 1 + 6.24T + 71T^{2} \) |
| 73 | \( 1 + (-5.09 + 5.09i)T - 73iT^{2} \) |
| 79 | \( 1 + 11iT - 79T^{2} \) |
| 83 | \( 1 + 83iT^{2} \) |
| 89 | \( 1 - 18.7iT - 89T^{2} \) |
| 97 | \( 1 + (2.54 + 2.54i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.659786646818267585475124606229, −8.492246617222004150216217237459, −7.986207592912142821856459520061, −7.28878050319583071947629426751, −6.60444833712205533714164375509, −5.35348406001457130827422093166, −3.82602611816195384628729825662, −3.26845878069301966098050757989, −2.30607082367421816341189689510, −0.29229296397500435943090621690,
2.11905156452410085811883280282, 2.85887694989544381373834857462, 4.17244198771550371085028472079, 5.22881603792553853535703967460, 5.86369627622208450023938398621, 6.84774640027818673279075231547, 8.178997816600518797006135970841, 8.805852578110759532623589403751, 9.565997493434904350210632175310, 10.32722611567554889268446261694