L(s) = 1 | + (−1.22 − 1.22i)3-s − 2i·4-s + (−2.54 + 2.54i)7-s + 2.99i·9-s + 6.24·11-s + (−2.44 + 2.44i)12-s + (2.54 + 2.54i)13-s − 4·16-s + (1.22 − 1.22i)17-s + 6.24·21-s + (3.67 + 3.67i)23-s + (3.67 − 3.67i)27-s + (5.09 + 5.09i)28-s + (−7.64 − 7.64i)33-s + 5.99·36-s + (−2.54 + 2.54i)37-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)3-s − i·4-s + (−0.963 + 0.963i)7-s + 0.999i·9-s + 1.88·11-s + (−0.707 + 0.707i)12-s + (0.707 + 0.707i)13-s − 16-s + (0.297 − 0.297i)17-s + 1.36·21-s + (0.766 + 0.766i)23-s + (0.707 − 0.707i)27-s + (0.963 + 0.963i)28-s + (−1.33 − 1.33i)33-s + 0.999·36-s + (−0.419 + 0.419i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.18468 - 0.336544i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.18468 - 0.336544i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.22 + 1.22i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-2.54 - 2.54i)T \) |
good | 2 | \( 1 + 2iT^{2} \) |
| 7 | \( 1 + (2.54 - 2.54i)T - 7iT^{2} \) |
| 11 | \( 1 - 6.24T + 11T^{2} \) |
| 17 | \( 1 + (-1.22 + 1.22i)T - 17iT^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (-3.67 - 3.67i)T + 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + (2.54 - 2.54i)T - 37iT^{2} \) |
| 41 | \( 1 - 6.24T + 41T^{2} \) |
| 43 | \( 1 - 43iT^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 + (8.57 + 8.57i)T + 53iT^{2} \) |
| 59 | \( 1 + 12.4iT - 59T^{2} \) |
| 61 | \( 1 - 7T + 61T^{2} \) |
| 67 | \( 1 + (-10.1 + 10.1i)T - 67iT^{2} \) |
| 71 | \( 1 - 6.24T + 71T^{2} \) |
| 73 | \( 1 + (-5.09 - 5.09i)T + 73iT^{2} \) |
| 79 | \( 1 - 11iT - 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 - 18.7iT - 89T^{2} \) |
| 97 | \( 1 + (2.54 - 2.54i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.584835583098175802077643251546, −9.450825131023342408156559276826, −8.406335501974573585669637394234, −6.82194637746791290833186503748, −6.56907532067074940012122401120, −5.83595109301146870302763581917, −4.96760897164363281234766611929, −3.61231804907073493328102727838, −2.04377637017619597110816430103, −1.02132938634369527862584137591,
0.867348953459630229687356348610, 3.20957995810997093232493963721, 3.81250788114851361248088354429, 4.46319630519698289245566523135, 5.98125416468532587693534961348, 6.63726464907384936657169445215, 7.35128242105188343717980525702, 8.663790656332479888011157129882, 9.237033493946162058511827159819, 10.12700406766687386302767651194