Maass form invariants
Level: | \( 14 = 2 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 14.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(4.58940589266960591223447404034 \pm 10 \cdot 10^{-12}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -0.98353672 \pm 1 \cdot 10^{-8} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +0.54739212 \pm 1 \cdot 10^{-8} \) | \(a_{6}= +0.69546548 \pm 1.6 \cdot 10^{-8} \) |
\(a_{7}= +0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= -0.03265553 \pm 1 \cdot 10^{-8} \) |
\(a_{10}= -0.38706468 \pm 1.5 \cdot 10^{-8} \) | \(a_{11}= +1.49404316 \pm 1 \cdot 10^{-8} \) | \(a_{12}= -0.49176836 \pm 1.6 \cdot 10^{-8} \) |
\(a_{13}= +1.24705038 \pm 1 \cdot 10^{-8} \) | \(a_{14}= -0.26726124 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= -0.53838024 \pm 1 \cdot 10^{-8} \) |
\(a_{16}= +0.25 \) | \(a_{17}= -0.55348948 \pm 1 \cdot 10^{-8} \) | \(a_{18}= +0.02309094 \pm 1.5 \cdot 10^{-8} \) |
\(a_{19}= +0.38706721 \pm 1 \cdot 10^{-8} \) | \(a_{20}= +0.27369606 \pm 1.5 \cdot 10^{-8} \) | \(a_{21}= -0.37174194 \pm 1.6 \cdot 10^{-8} \) |
\(a_{22}= -1.05644805 \pm 1.5 \cdot 10^{-8} \) | \(a_{23}= +0.73198177 \pm 1 \cdot 10^{-8} \) | \(a_{24}= +0.34773274 \pm 1.6 \cdot 10^{-8} \) |
\(a_{25}= -0.70036187 \pm 1 \cdot 10^{-8} \) | \(a_{26}= -0.88179778 \pm 1.5 \cdot 10^{-8} \) | \(a_{27}= +1.01565463 \pm 1 \cdot 10^{-8} \) |
\(a_{28}= +0.18898224 \pm 9.4 \cdot 10^{-8} \) | \(a_{29}= +1.56246294 \pm 1 \cdot 10^{-8} \) | \(a_{30}= +0.38069232 \pm 2.1 \cdot 10^{-8} \) |
\(a_{31}= +0.22664571 \pm 1 \cdot 10^{-8} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -1.46944630 \pm 1 \cdot 10^{-8} \) |
\(a_{34}= +0.39137616 \pm 1.3 \cdot 10^{-8} \) | \(a_{35}= +0.20689477 \pm 1.5 \cdot 10^{-8} \) | \(a_{36}= -0.01632776 \pm 1.5 \cdot 10^{-8} \) |
\(a_{37}= -1.64103625 \pm 1 \cdot 10^{-8} \) | \(a_{38}= -0.27369785 \pm 1.5 \cdot 10^{-8} \) | \(a_{39}= -1.22651984 \pm 1 \cdot 10^{-8} \) |
\(a_{40}= -0.19353234 \pm 1.5 \cdot 10^{-8} \) | \(a_{41}= +1.50447766 \pm 1 \cdot 10^{-8} \) | \(a_{42}= +0.26286124 \pm 1.6 \cdot 10^{-8} \) |
\(a_{43}= +0.29583513 \pm 1 \cdot 10^{-8} \) | \(a_{44}= +0.74702158 \pm 1.5 \cdot 10^{-8} \) | \(a_{45}= -0.01787538 \pm 1 \cdot 10^{-8} \) |
\(a_{46}= -0.51758927 \pm 1.4 \cdot 10^{-8} \) | \(a_{47}= +1.01760252 \pm 1 \cdot 10^{-8} \) | \(a_{48}= -0.24588418 \pm 1.6 \cdot 10^{-8} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +0.49523063 \pm 1.4 \cdot 10^{-8} \) | \(a_{51}= +0.54437722 \pm 1 \cdot 10^{-8} \) |
\(a_{52}= +0.62352519 \pm 1.5 \cdot 10^{-8} \) | \(a_{53}= -1.66998253 \pm 1 \cdot 10^{-8} \) | \(a_{54}= -0.71817627 \pm 1.5 \cdot 10^{-8} \) |
\(a_{55}= +0.81782745 \pm 1 \cdot 10^{-8} \) | \(a_{56}= -0.13363062 \pm 1.6 \cdot 10^{-7} \) | \(a_{57}= -0.38069481 \pm 1 \cdot 10^{-8} \) |
\(a_{58}= -1.10482814 \pm 1.5 \cdot 10^{-8} \) | \(a_{59}= +1.16513110 \pm 1 \cdot 10^{-8} \) | \(a_{60}= -0.26919012 \pm 2.1 \cdot 10^{-8} \) |
\(a_{61}= -1.02508575 \pm 1 \cdot 10^{-8} \) | \(a_{62}= -0.16026272 \pm 1.5 \cdot 10^{-8} \) | \(a_{63}= -0.01234263 \pm 1.5 \cdot 10^{-8} \) |
\(a_{64}= +0.125 \) | \(a_{65}= +0.68262555 \pm 1 \cdot 10^{-8} \) | \(a_{66}= +1.03905544 \pm 2.1 \cdot 10^{-8} \) |
\(a_{67}= -0.44006394 \pm 1 \cdot 10^{-8} \) | \(a_{68}= -0.27674474 \pm 1.3 \cdot 10^{-8} \) | \(a_{69}= -0.71993094 \pm 1 \cdot 10^{-8} \) |
\(a_{70}= -0.14629670 \pm 1.5 \cdot 10^{-8} \) | \(a_{71}= -0.44225655 \pm 1 \cdot 10^{-8} \) | \(a_{72}= +0.01154547 \pm 1.5 \cdot 10^{-8} \) |
\(a_{73}= -0.20826693 \pm 1 \cdot 10^{-8} \) | \(a_{74}= +1.16038786 \pm 1.4 \cdot 10^{-8} \) | \(a_{75}= +0.68883162 \pm 1 \cdot 10^{-8} \) |
\(a_{76}= +0.19353361 \pm 1.5 \cdot 10^{-8} \) | \(a_{77}= +0.56469523 \pm 1.5 \cdot 10^{-8} \) | \(a_{78}= +0.86728050 \pm 2.1 \cdot 10^{-8} \) |
\(a_{79}= +0.03534000 \pm 1 \cdot 10^{-8} \) | \(a_{80}= +0.13684803 \pm 1.5 \cdot 10^{-8} \) | \(a_{81}= -0.96627809 \pm 1 \cdot 10^{-8} \) |
\(a_{82}= -1.06382636 \pm 1.3 \cdot 10^{-8} \) | \(a_{83}= +1.50962614 \pm 1 \cdot 10^{-8} \) | \(a_{84}= -0.18587097 \pm 1.6 \cdot 10^{-8} \) |
\(a_{85}= -0.30297578 \pm 1 \cdot 10^{-8} \) | \(a_{86}= -0.20918703 \pm 1.5 \cdot 10^{-8} \) | \(a_{87}= -1.53673967 \pm 1 \cdot 10^{-8} \) |
\(a_{88}= -0.52822402 \pm 1.5 \cdot 10^{-8} \) | \(a_{89}= +0.76800844 \pm 1 \cdot 10^{-8} \) | \(a_{90}= +0.01263980 \pm 2.0 \cdot 10^{-8} \) |
\(a_{91}= +0.47134074 \pm 1.5 \cdot 10^{-8} \) | \(a_{92}= +0.36599088 \pm 1.4 \cdot 10^{-8} \) | \(a_{93}= -0.22291438 \pm 1 \cdot 10^{-8} \) |
\(a_{94}= -0.71955364 \pm 1.4 \cdot 10^{-8} \) | \(a_{95}= +0.21187754 \pm 1 \cdot 10^{-8} \) | \(a_{96}= +0.17386637 \pm 1.6 \cdot 10^{-8} \) |
\(a_{97}= -0.22921489 \pm 1 \cdot 10^{-8} \) | \(a_{98}= -0.10101525 \pm 2.6 \cdot 10^{-7} \) | \(a_{99}= -0.04878877 \pm 1 \cdot 10^{-8} \) |
\(a_{100}= -0.35018094 \pm 1.4 \cdot 10^{-8} \) | \(a_{101}= -0.04554255 \pm 1 \cdot 10^{-8} \) | \(a_{102}= -0.38493283 \pm 2.0 \cdot 10^{-8} \) |
\(a_{103}= +0.10428377 \pm 1 \cdot 10^{-8} \) | \(a_{104}= -0.44089889 \pm 1.5 \cdot 10^{-8} \) | \(a_{105}= -0.20348861 \pm 2.1 \cdot 10^{-8} \) |
\(a_{106}= +1.18085597 \pm 1.5 \cdot 10^{-8} \) | \(a_{107}= -1.19239317 \pm 1 \cdot 10^{-8} \) | \(a_{108}= +0.50782731 \pm 1.5 \cdot 10^{-8} \) |
\(a_{109}= +1.19414626 \pm 1 \cdot 10^{-8} \) | \(a_{110}= -0.57829133 \pm 2.0 \cdot 10^{-8} \) | \(a_{111}= +1.61401940 \pm 1 \cdot 10^{-8} \) |
\(a_{112}= +0.09449112 \pm 3.0 \cdot 10^{-7} \) | \(a_{113}= -0.07428555 \pm 1 \cdot 10^{-8} \) | \(a_{114}= +0.26919188 \pm 2.1 \cdot 10^{-8} \) |
\(a_{115}= +0.40068105 \pm 1 \cdot 10^{-8} \) | \(a_{116}= +0.78123147 \pm 1.5 \cdot 10^{-8} \) | \(a_{117}= -0.04072309 \pm 1 \cdot 10^{-8} \) |
\(a_{118}= -0.82387210 \pm 1.5 \cdot 10^{-8} \) | \(a_{119}= -0.20919936 \pm 1.3 \cdot 10^{-8} \) | \(a_{120}= +0.19034616 \pm 2.1 \cdot 10^{-8} \) |
\(a_{121}= +1.23216495 \pm 1 \cdot 10^{-8} \) | \(a_{122}= +0.72484509 \pm 1.3 \cdot 10^{-8} \) | \(a_{123}= -1.47970902 \pm 1 \cdot 10^{-8} \) |
\(a_{124}= +0.11332285 \pm 1.5 \cdot 10^{-8} \) | \(a_{125}= -0.93076468 \pm 1 \cdot 10^{-8} \) | \(a_{126}= +0.00872756 \pm 1.5 \cdot 10^{-8} \) |
\(a_{127}= -1.41635729 \pm 1 \cdot 10^{-8} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -0.29096471 \pm 1 \cdot 10^{-8} \) |
\(a_{130}= -0.48268915 \pm 2.0 \cdot 10^{-8} \) | \(a_{131}= -1.21020208 \pm 1 \cdot 10^{-8} \) | \(a_{132}= -0.73472315 \pm 2.1 \cdot 10^{-8} \) |
\(a_{133}= +0.14629765 \pm 1.5 \cdot 10^{-8} \) | \(a_{134}= +0.31117220 \pm 1.5 \cdot 10^{-8} \) | \(a_{135}= +0.55596134 \pm 1 \cdot 10^{-8} \) |
\(a_{136}= +0.19568808 \pm 1.3 \cdot 10^{-8} \) | \(a_{137}= -0.59053345 \pm 1 \cdot 10^{-8} \) | \(a_{138}= +0.50906805 \pm 2.1 \cdot 10^{-8} \) |
\(a_{139}= +0.93953275 \pm 1 \cdot 10^{-8} \) | \(a_{140}= +0.10344739 \pm 1.5 \cdot 10^{-8} \) | \(a_{141}= -1.00084944 \pm 1 \cdot 10^{-8} \) |
\(a_{142}= +0.31272261 \pm 1.7 \cdot 10^{-8} \) | \(a_{143}= +1.86314709 \pm 1 \cdot 10^{-8} \) | \(a_{144}= -0.00816388 \pm 1.5 \cdot 10^{-8} \) |
\(a_{145}= +0.85527989 \pm 1 \cdot 10^{-8} \) | \(a_{146}= +0.14726696 \pm 1.5 \cdot 10^{-8} \) | \(a_{147}= -0.14050525 \pm 1.6 \cdot 10^{-8} \) |
\(a_{148}= -0.82051812 \pm 1.4 \cdot 10^{-8} \) | \(a_{149}= +0.65401758 \pm 1 \cdot 10^{-8} \) | \(a_{150}= -0.48707751 \pm 2.0 \cdot 10^{-8} \) |
\(a_{151}= +1.04340107 \pm 1 \cdot 10^{-8} \) | \(a_{152}= -0.13684892 \pm 1.5 \cdot 10^{-8} \) | \(a_{153}= +0.01807449 \pm 1 \cdot 10^{-8} \) |
\(a_{154}= -0.39929983 \pm 1.5 \cdot 10^{-8} \) | \(a_{155}= +0.12406407 \pm 1 \cdot 10^{-8} \) | \(a_{156}= -0.61325992 \pm 2.1 \cdot 10^{-8} \) |
\(a_{157}= -1.12798579 \pm 1 \cdot 10^{-8} \) | \(a_{158}= -0.02498915 \pm 1.6 \cdot 10^{-8} \) | \(a_{159}= +1.64248913 \pm 1 \cdot 10^{-8} \) |
\(a_{160}= -0.09676617 \pm 1.5 \cdot 10^{-8} \) | \(a_{161}= +0.27666310 \pm 1.4 \cdot 10^{-8} \) | \(a_{162}= +0.68326179 \pm 1.5 \cdot 10^{-8} \) |
\(a_{163}= -0.75649892 \pm 1 \cdot 10^{-8} \) | \(a_{164}= +0.75223883 \pm 1.3 \cdot 10^{-8} \) | \(a_{165}= -0.80436332 \pm 1 \cdot 10^{-8} \) |
\(a_{166}= -1.06746688 \pm 1.4 \cdot 10^{-8} \) | \(a_{167}= -0.59835505 \pm 1 \cdot 10^{-8} \) | \(a_{168}= +0.13143062 \pm 1.6 \cdot 10^{-8} \) |
\(a_{169}= +0.55513466 \pm 1 \cdot 10^{-8} \) | \(a_{170}= +0.21423623 \pm 1.8 \cdot 10^{-8} \) | \(a_{171}= -0.01263988 \pm 1 \cdot 10^{-8} \) |
\(a_{172}= +0.14791757 \pm 1.5 \cdot 10^{-8} \) | \(a_{173}= -0.43439614 \pm 1 \cdot 10^{-8} \) | \(a_{174}= +1.08663904 \pm 2.2 \cdot 10^{-8} \) |
\(a_{175}= -0.26471191 \pm 1.4 \cdot 10^{-8} \) | \(a_{176}= +0.37351079 \pm 1.5 \cdot 10^{-8} \) | \(a_{177}= -1.14594921 \pm 1 \cdot 10^{-8} \) |
\(a_{178}= -0.54306398 \pm 1.3 \cdot 10^{-8} \) | \(a_{179}= -0.44829120 \pm 1 \cdot 10^{-8} \) | \(a_{180}= -0.00893769 \pm 2.0 \cdot 10^{-8} \) |
\(a_{181}= -0.30124397 \pm 1 \cdot 10^{-8} \) | \(a_{182}= -0.33328823 \pm 1.5 \cdot 10^{-8} \) | \(a_{183}= +1.00820947 \pm 1 \cdot 10^{-8} \) |
\(a_{184}= -0.25879464 \pm 1.4 \cdot 10^{-8} \) | \(a_{185}= -0.89829030 \pm 1 \cdot 10^{-8} \) | \(a_{186}= +0.15762427 \pm 2.2 \cdot 10^{-8} \) |
\(a_{187}= -0.82693717 \pm 1 \cdot 10^{-8} \) | \(a_{188}= +0.50880126 \pm 1.4 \cdot 10^{-8} \) | \(a_{189}= +0.38388137 \pm 1.5 \cdot 10^{-8} \) |
\(a_{190}= -0.14982005 \pm 2.0 \cdot 10^{-8} \) | \(a_{191}= +0.50553851 \pm 1 \cdot 10^{-8} \) | \(a_{192}= -0.12294209 \pm 1.6 \cdot 10^{-8} \) |
\(a_{193}= +1.27035255 \pm 1 \cdot 10^{-8} \) | \(a_{194}= +0.16207941 \pm 1.4 \cdot 10^{-8} \) | \(a_{195}= -0.67138729 \pm 1 \cdot 10^{-8} \) |
\(a_{196}= +0.07142857 \pm 4.5 \cdot 10^{-7} \) | \(a_{197}= +0.75101995 \pm 1 \cdot 10^{-8} \) | \(a_{198}= +0.03449887 \pm 2.0 \cdot 10^{-8} \) |
\(a_{199}= -1.05019306 \pm 1 \cdot 10^{-8} \) | \(a_{200}= +0.24761531 \pm 1.4 \cdot 10^{-8} \) | \(a_{201}= +0.43281904 \pm 1 \cdot 10^{-8} \) |
\(a_{202}= +0.03220345 \pm 1.5 \cdot 10^{-8} \) | \(a_{203}= +0.59055548 \pm 1.5 \cdot 10^{-8} \) | \(a_{204}= +0.27218861 \pm 2.0 \cdot 10^{-8} \) |
\(a_{205}= +0.82353921 \pm 1 \cdot 10^{-8} \) | \(a_{206}= -0.07373976 \pm 1.4 \cdot 10^{-8} \) | \(a_{207}= -0.02390325 \pm 1 \cdot 10^{-8} \) |
\(a_{208}= +0.31176260 \pm 1.5 \cdot 10^{-8} \) | \(a_{209}= +0.57829512 \pm 1 \cdot 10^{-8} \) | \(a_{210}= +0.14388817 \pm 2.1 \cdot 10^{-8} \) |
\(a_{211}= -1.21032270 \pm 1 \cdot 10^{-8} \) | \(a_{212}= -0.83499126 \pm 1.5 \cdot 10^{-8} \) | \(a_{213}= +0.43497555 \pm 1 \cdot 10^{-8} \) |
\(a_{214}= +0.84314930 \pm 1.4 \cdot 10^{-8} \) | \(a_{215}= +0.16193782 \pm 1 \cdot 10^{-8} \) | \(a_{216}= -0.35908814 \pm 1.5 \cdot 10^{-8} \) |
\(a_{217}= +0.08566403 \pm 1.5 \cdot 10^{-8} \) | \(a_{218}= -0.84438892 \pm 1.4 \cdot 10^{-8} \) | \(a_{219}= +0.20483818 \pm 1 \cdot 10^{-8} \) |
\(a_{220}= +0.40891372 \pm 2.0 \cdot 10^{-8} \) | \(a_{221}= -0.69022927 \pm 1 \cdot 10^{-8} \) | \(a_{222}= -1.14128407 \pm 2.0 \cdot 10^{-8} \) |
\(a_{223}= +0.85645788 \pm 1 \cdot 10^{-8} \) | \(a_{224}= -0.06681531 \pm 5.0 \cdot 10^{-7} \) | \(a_{225}= +0.02287069 \pm 1 \cdot 10^{-8} \) |
\(a_{226}= +0.05252782 \pm 1.6 \cdot 10^{-8} \) | \(a_{227}= -0.56460333 \pm 1 \cdot 10^{-8} \) | \(a_{228}= -0.19034741 \pm 2.1 \cdot 10^{-8} \) |
\(a_{229}= -0.60662590 \pm 1 \cdot 10^{-8} \) | \(a_{230}= -0.28332429 \pm 1.9 \cdot 10^{-8} \) | \(a_{231}= -0.55539850 \pm 2.1 \cdot 10^{-8} \) |
\(a_{232}= -0.55241407 \pm 1.5 \cdot 10^{-8} \) | \(a_{233}= -0.11593240 \pm 1 \cdot 10^{-8} \) | \(a_{234}= +0.02879557 \pm 2.0 \cdot 10^{-8} \) |
\(a_{235}= +0.55702760 \pm 1 \cdot 10^{-8} \) | \(a_{236}= +0.58256555 \pm 1.5 \cdot 10^{-8} \) | \(a_{237}= -0.03475818 \pm 1 \cdot 10^{-8} \) |
\(a_{238}= +0.14792629 \pm 1.3 \cdot 10^{-8} \) | \(a_{239}= -0.82694867 \pm 1 \cdot 10^{-8} \) | \(a_{240}= -0.13459506 \pm 2.1 \cdot 10^{-8} \) |
\(a_{241}= +1.42005839 \pm 1 \cdot 10^{-8} \) | \(a_{242}= -0.87127219 \pm 1.4 \cdot 10^{-8} \) | \(a_{243}= -0.06528465 \pm 1 \cdot 10^{-8} \) |
\(a_{244}= -0.51254288 \pm 1.3 \cdot 10^{-8} \) | \(a_{245}= +0.07819887 \pm 1.5 \cdot 10^{-8} \) | \(a_{246}= +1.04631228 \pm 2.0 \cdot 10^{-8} \) |
\(a_{247}= +0.48269231 \pm 1 \cdot 10^{-8} \) | \(a_{248}= -0.08013136 \pm 1.5 \cdot 10^{-8} \) | \(a_{249}= -1.48477273 \pm 1 \cdot 10^{-8} \) |
\(a_{250}= +0.65815002 \pm 1.4 \cdot 10^{-8} \) | \(a_{251}= -0.10590627 \pm 1 \cdot 10^{-8} \) | \(a_{252}= -0.00617131 \pm 1.5 \cdot 10^{-8} \) |
\(a_{253}= +1.09361235 \pm 1 \cdot 10^{-8} \) | \(a_{254}= +1.00151585 \pm 1.5 \cdot 10^{-8} \) | \(a_{255}= +0.29798780 \pm 1 \cdot 10^{-8} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= -0.08201911 \pm 1 \cdot 10^{-8} \) | \(a_{258}= +0.20574312 \pm 2.1 \cdot 10^{-8} \) |
\(a_{259}= -0.62025340 \pm 1.4 \cdot 10^{-8} \) | \(a_{260}= +0.34131277 \pm 2.0 \cdot 10^{-8} \) | \(a_{261}= -0.05102305 \pm 1 \cdot 10^{-8} \) |
\(a_{262}= +0.85574210 \pm 1.4 \cdot 10^{-8} \) | \(a_{263}= +1.58354406 \pm 1 \cdot 10^{-8} \) | \(a_{264}= +0.51952772 \pm 2.1 \cdot 10^{-8} \) |
\(a_{265}= -0.91413527 \pm 1 \cdot 10^{-8} \) | \(a_{266}= -0.10344806 \pm 1.5 \cdot 10^{-8} \) | \(a_{267}= -0.75536450 \pm 1 \cdot 10^{-8} \) |
\(a_{268}= -0.22003197 \pm 1.5 \cdot 10^{-8} \) | \(a_{269}= +0.96086287 \pm 1 \cdot 10^{-8} \) | \(a_{270}= -0.39312403 \pm 2.0 \cdot 10^{-8} \) |
\(a_{271}= +1.12525444 \pm 1 \cdot 10^{-8} \) | \(a_{272}= -0.13837237 \pm 1.3 \cdot 10^{-8} \) | \(a_{273}= -0.46358092 \pm 2.1 \cdot 10^{-8} \) |
\(a_{274}= +0.41757021 \pm 1.6 \cdot 10^{-8} \) | \(a_{275}= -1.04637086 \pm 1 \cdot 10^{-8} \) | \(a_{276}= -0.35996547 \pm 2.1 \cdot 10^{-8} \) |
\(a_{277}= -1.16711312 \pm 1 \cdot 10^{-8} \) | \(a_{278}= -0.66434998 \pm 1.4 \cdot 10^{-8} \) | \(a_{279}= -0.00740124 \pm 1 \cdot 10^{-8} \) |
\(a_{280}= -0.07314835 \pm 1.5 \cdot 10^{-8} \) | \(a_{281}= -1.46912905 \pm 1 \cdot 10^{-8} \) | \(a_{282}= +0.70770743 \pm 2.0 \cdot 10^{-8} \) |
\(a_{283}= -0.72946121 \pm 1 \cdot 10^{-8} \) | \(a_{284}= -0.22112827 \pm 1.7 \cdot 10^{-8} \) | \(a_{285}= -0.20838934 \pm 1 \cdot 10^{-8} \) |
\(a_{286}= -1.31744394 \pm 2.0 \cdot 10^{-8} \) | \(a_{287}= +0.56863911 \pm 1.3 \cdot 10^{-8} \) | \(a_{288}= +0.00577274 \pm 1.5 \cdot 10^{-8} \) |
\(a_{289}= -0.69364940 \pm 1 \cdot 10^{-8} \) | \(a_{290}= -0.60477421 \pm 2.0 \cdot 10^{-8} \) | \(a_{291}= +0.22544127 \pm 1 \cdot 10^{-8} \) |
\(a_{292}= -0.10413347 \pm 1.5 \cdot 10^{-8} \) | \(a_{293}= +1.58880246 \pm 1 \cdot 10^{-8} \) | \(a_{294}= +0.09935221 \pm 1.6 \cdot 10^{-8} \) |
\(a_{295}= +0.63778358 \pm 1 \cdot 10^{-8} \) | \(a_{296}= +0.58019393 \pm 1.4 \cdot 10^{-8} \) | \(a_{297}= +1.51743184 \pm 1 \cdot 10^{-8} \) |
\(a_{298}= -0.46246026 \pm 1.3 \cdot 10^{-8} \) | \(a_{299}= +0.91281814 \pm 1 \cdot 10^{-8} \) | \(a_{300}= +0.34441581 \pm 2.0 \cdot 10^{-8} \) |
\(a_{301}= +0.11181517 \pm 1.5 \cdot 10^{-8} \) | \(a_{302}= -0.73779597 \pm 1.4 \cdot 10^{-8} \) | \(a_{303}= +0.04479277 \pm 1 \cdot 10^{-8} \) |
\(a_{304}= +0.09676680 \pm 1.5 \cdot 10^{-8} \) | \(a_{305}= -0.56112386 \pm 1 \cdot 10^{-8} \) | \(a_{306}= -0.01278059 \pm 1.8 \cdot 10^{-8} \) |
\(a_{307}= -0.14878763 \pm 1 \cdot 10^{-8} \) | \(a_{308}= +0.28234762 \pm 1.5 \cdot 10^{-8} \) | \(a_{309}= -0.10256692 \pm 1 \cdot 10^{-8} \) |
\(a_{310}= -0.08772655 \pm 2.0 \cdot 10^{-8} \) | \(a_{311}= -1.19106828 \pm 1 \cdot 10^{-8} \) | \(a_{312}= +0.43364025 \pm 2.1 \cdot 10^{-8} \) |
\(a_{313}= -1.24629812 \pm 1 \cdot 10^{-8} \) | \(a_{314}= +0.79760640 \pm 1.4 \cdot 10^{-8} \) | \(a_{315}= -0.00675626 \pm 2.0 \cdot 10^{-8} \) |
\(a_{316}= +0.01767000 \pm 1.6 \cdot 10^{-8} \) | \(a_{317}= +0.47628767 \pm 1 \cdot 10^{-8} \) | \(a_{318}= -1.16141520 \pm 2.1 \cdot 10^{-8} \) |
\(a_{319}= +2.33438706 \pm 1 \cdot 10^{-8} \) | \(a_{320}= +0.06842401 \pm 1.5 \cdot 10^{-8} \) | \(a_{321}= +1.17276246 \pm 1 \cdot 10^{-8} \) |
\(a_{322}= -0.19563036 \pm 1.4 \cdot 10^{-8} \) | \(a_{323}= -0.21423763 \pm 1 \cdot 10^{-8} \) | \(a_{324}= -0.48313904 \pm 1.5 \cdot 10^{-8} \) |
\(a_{325}= -0.87338654 \pm 1 \cdot 10^{-8} \) | \(a_{326}= +0.53492552 \pm 1.4 \cdot 10^{-8} \) | \(a_{327}= -1.17448670 \pm 1 \cdot 10^{-8} \) |
\(a_{328}= -0.53191318 \pm 1.3 \cdot 10^{-8} \) | \(a_{329}= +0.38461760 \pm 1.4 \cdot 10^{-8} \) | \(a_{330}= +0.56877076 \pm 2.6 \cdot 10^{-8} \) |
\(a_{331}= +0.77328223 \pm 1 \cdot 10^{-8} \) | \(a_{332}= +0.75481307 \pm 1.4 \cdot 10^{-8} \) | \(a_{333}= +0.05358890 \pm 1 \cdot 10^{-8} \) |
\(a_{334}= +0.42310091 \pm 1.5 \cdot 10^{-8} \) | \(a_{335}= -0.24088753 \pm 1 \cdot 10^{-8} \) | \(a_{336}= -0.09293548 \pm 1.6 \cdot 10^{-8} \) |
\(a_{337}= +0.69431920 \pm 1 \cdot 10^{-8} \) | \(a_{338}= -0.39253948 \pm 1.5 \cdot 10^{-8} \) | \(a_{339}= +0.07306257 \pm 1 \cdot 10^{-8} \) |
\(a_{340}= -0.15148789 \pm 1.8 \cdot 10^{-8} \) | \(a_{341}= +0.33861847 \pm 1 \cdot 10^{-8} \) | \(a_{342}= +0.00893775 \pm 2.0 \cdot 10^{-8} \) |
\(a_{343}= +0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -0.10459351 \pm 1.5 \cdot 10^{-8} \) | \(a_{345}= -0.39408452 \pm 1 \cdot 10^{-8} \) |
\(a_{346}= +0.30716446 \pm 1.6 \cdot 10^{-8} \) | \(a_{347}= -0.58668373 \pm 1 \cdot 10^{-8} \) | \(a_{348}= -0.76836983 \pm 2.2 \cdot 10^{-8} \) |
\(a_{349}= -1.61504659 \pm 1 \cdot 10^{-8} \) | \(a_{350}= +0.18717958 \pm 1.4 \cdot 10^{-8} \) | \(a_{351}= +1.26657249 \pm 1 \cdot 10^{-8} \) |
\(a_{352}= -0.26411201 \pm 1.5 \cdot 10^{-8} \) | \(a_{353}= -1.35261487 \pm 1 \cdot 10^{-8} \) | \(a_{354}= +0.81030846 \pm 2.1 \cdot 10^{-8} \) |
\(a_{355}= -0.24208775 \pm 1 \cdot 10^{-8} \) | \(a_{356}= +0.38400422 \pm 1.3 \cdot 10^{-8} \) | \(a_{357}= +0.20575525 \pm 2.0 \cdot 10^{-8} \) |
\(a_{358}= +0.31698974 \pm 1.4 \cdot 10^{-8} \) | \(a_{359}= -0.81607263 \pm 1 \cdot 10^{-8} \) | \(a_{360}= +0.00631990 \pm 2.0 \cdot 10^{-8} \) |
\(a_{361}= -0.85017897 \pm 1 \cdot 10^{-8} \) | \(a_{362}= +0.21301166 \pm 1.4 \cdot 10^{-8} \) | \(a_{363}= -1.21187947 \pm 1 \cdot 10^{-8} \) |
\(a_{364}= +0.23567037 \pm 1.5 \cdot 10^{-8} \) | \(a_{365}= -0.11400368 \pm 1 \cdot 10^{-8} \) | \(a_{366}= -0.71291176 \pm 1.9 \cdot 10^{-8} \) |
\(a_{367}= -1.15654149 \pm 1 \cdot 10^{-8} \) | \(a_{368}= +0.18299544 \pm 1.4 \cdot 10^{-8} \) | \(a_{369}= -0.04912951 \pm 1 \cdot 10^{-8} \) |
\(a_{370}= +0.63518717 \pm 1.9 \cdot 10^{-8} \) | \(a_{371}= -0.63119407 \pm 1.5 \cdot 10^{-8} \) | \(a_{372}= -0.11145719 \pm 2.2 \cdot 10^{-8} \) |
\(a_{373}= +0.34851735 \pm 1 \cdot 10^{-8} \) | \(a_{374}= +0.58473288 \pm 1.8 \cdot 10^{-8} \) | \(a_{375}= +0.91544124 \pm 1 \cdot 10^{-8} \) |
\(a_{376}= -0.35977682 \pm 1.4 \cdot 10^{-8} \) | \(a_{377}= +1.94847001 \pm 1 \cdot 10^{-8} \) | \(a_{378}= -0.27144512 \pm 1.5 \cdot 10^{-8} \) |
\(a_{379}= +0.75062538 \pm 1 \cdot 10^{-8} \) | \(a_{380}= +0.10593877 \pm 2.0 \cdot 10^{-8} \) | \(a_{381}= +1.39303940 \pm 1 \cdot 10^{-8} \) |
\(a_{382}= -0.35746971 \pm 1.3 \cdot 10^{-8} \) | \(a_{383}= +0.82396219 \pm 1 \cdot 10^{-8} \) | \(a_{384}= +0.08693319 \pm 1.6 \cdot 10^{-8} \) |
\(a_{385}= +0.30910972 \pm 2.0 \cdot 10^{-8} \) | \(a_{386}= -0.89827490 \pm 1.4 \cdot 10^{-8} \) | \(a_{387}= -0.00966065 \pm 1 \cdot 10^{-8} \) |
\(a_{388}= -0.11460745 \pm 1.4 \cdot 10^{-8} \) | \(a_{389}= -1.14967770 \pm 1 \cdot 10^{-8} \) | \(a_{390}= +0.47474251 \pm 2.6 \cdot 10^{-8} \) |
\(a_{391}= -0.40514421 \pm 1 \cdot 10^{-8} \) | \(a_{392}= -0.05050763 \pm 7.9 \cdot 10^{-7} \) | \(a_{393}= +1.19027818 \pm 1 \cdot 10^{-8} \) |
\(a_{394}= -0.53105130 \pm 1.6 \cdot 10^{-8} \) | \(a_{395}= +0.01934484 \pm 1 \cdot 10^{-8} \) | \(a_{396}= -0.02439438 \pm 2.0 \cdot 10^{-8} \) |
\(a_{397}= +0.88309637 \pm 1 \cdot 10^{-8} \) | \(a_{398}= +0.74259864 \pm 1.4 \cdot 10^{-8} \) | \(a_{399}= -0.14388911 \pm 2.1 \cdot 10^{-8} \) |
\(a_{400}= -0.17509047 \pm 1.4 \cdot 10^{-8} \) | \(a_{401}= +1.58957749 \pm 1 \cdot 10^{-8} \) | \(a_{402}= -0.30604928 \pm 2.1 \cdot 10^{-8} \) |
\(a_{403}= +0.28263862 \pm 1 \cdot 10^{-8} \) | \(a_{404}= -0.02277127 \pm 1.5 \cdot 10^{-8} \) | \(a_{405}= -0.52893301 \pm 1 \cdot 10^{-8} \) |
\(a_{406}= -0.41758579 \pm 1.5 \cdot 10^{-8} \) | \(a_{407}= -2.45177898 \pm 1 \cdot 10^{-8} \) | \(a_{408}= -0.19246641 \pm 2.0 \cdot 10^{-8} \) |
\(a_{409}= +0.78196174 \pm 1 \cdot 10^{-8} \) | \(a_{410}= -0.58233016 \pm 1.8 \cdot 10^{-8} \) | \(a_{411}= +0.58081133 \pm 1 \cdot 10^{-8} \) |
\(a_{412}= +0.05214189 \pm 1.4 \cdot 10^{-8} \) | \(a_{413}= +0.44037816 \pm 1.5 \cdot 10^{-8} \) | \(a_{414}= +0.01690215 \pm 1.9 \cdot 10^{-8} \) |
\(a_{415}= +0.82635744 \pm 1 \cdot 10^{-8} \) | \(a_{416}= -0.22044945 \pm 1.5 \cdot 10^{-8} \) | \(a_{417}= -0.92406496 \pm 1 \cdot 10^{-8} \) |
\(a_{418}= -0.40891640 \pm 2.0 \cdot 10^{-8} \) | \(a_{419}= -0.75547185 \pm 1 \cdot 10^{-8} \) | \(a_{420}= -0.10174430 \pm 2.1 \cdot 10^{-8} \) |
\(a_{421}= -0.68441734 \pm 1 \cdot 10^{-8} \) | \(a_{422}= +0.85582739 \pm 1.6 \cdot 10^{-8} \) | \(a_{423}= -0.03323035 \pm 1 \cdot 10^{-8} \) |
\(a_{424}= +0.59042798 \pm 1.5 \cdot 10^{-8} \) | \(a_{425}= +0.38764293 \pm 1 \cdot 10^{-8} \) | \(a_{426}= -0.30757416 \pm 2.3 \cdot 10^{-8} \) |
\(a_{427}= -0.38744600 \pm 1.3 \cdot 10^{-8} \) | \(a_{428}= -0.59619658 \pm 1.4 \cdot 10^{-8} \) | \(a_{429}= -1.83247357 \pm 1 \cdot 10^{-8} \) |
\(a_{430}= -0.11450733 \pm 2.0 \cdot 10^{-8} \) | \(a_{431}= -0.38785378 \pm 1 \cdot 10^{-8} \) | \(a_{432}= +0.25391366 \pm 1.5 \cdot 10^{-8} \) |
\(a_{433}= +0.27747270 \pm 1 \cdot 10^{-8} \) | \(a_{434}= -0.06057361 \pm 1.5 \cdot 10^{-8} \) | \(a_{435}= -0.84119918 \pm 1 \cdot 10^{-8} \) |
\(a_{436}= +0.59707313 \pm 1.4 \cdot 10^{-8} \) | \(a_{437}= +0.28332614 \pm 1 \cdot 10^{-8} \) | \(a_{438}= -0.14484246 \pm 2.1 \cdot 10^{-8} \) |
\(a_{439}= -0.62504633 \pm 1 \cdot 10^{-8} \) | \(a_{440}= -0.28914567 \pm 2.0 \cdot 10^{-8} \) | \(a_{441}= -0.00466508 \pm 1.5 \cdot 10^{-8} \) |
\(a_{442}= +0.48806580 \pm 1.8 \cdot 10^{-8} \) | \(a_{443}= +0.80653103 \pm 1 \cdot 10^{-8} \) | \(a_{444}= +0.80700970 \pm 2.0 \cdot 10^{-8} \) |
\(a_{445}= +0.42040177 \pm 1 \cdot 10^{-8} \) | \(a_{446}= -0.60560717 \pm 1.4 \cdot 10^{-8} \) | \(a_{447}= -0.64325030 \pm 1 \cdot 10^{-8} \) |
\(a_{448}= +0.04724556 \pm 9.0 \cdot 10^{-7} \) | \(a_{449}= +0.47038979 \pm 1 \cdot 10^{-8} \) | \(a_{450}= -0.01617202 \pm 1.9 \cdot 10^{-8} \) |
\(a_{451}= +2.24775455 \pm 1 \cdot 10^{-8} \) | \(a_{452}= -0.03714277 \pm 1.6 \cdot 10^{-8} \) | \(a_{453}= -1.02622326 \pm 1 \cdot 10^{-8} \) |
\(a_{454}= +0.39923484 \pm 1.5 \cdot 10^{-8} \) | \(a_{455}= +0.25800821 \pm 2.0 \cdot 10^{-8} \) | \(a_{456}= +0.13459594 \pm 2.1 \cdot 10^{-8} \) |
\(a_{457}= -0.96464158 \pm 1 \cdot 10^{-8} \) | \(a_{458}= +0.42894929 \pm 1.4 \cdot 10^{-8} \) | \(a_{459}= -0.56215415 \pm 1 \cdot 10^{-8} \) |
\(a_{460}= +0.20034052 \pm 1.9 \cdot 10^{-8} \) | \(a_{461}= -0.54053221 \pm 1 \cdot 10^{-8} \) | \(a_{462}= +0.39272604 \pm 2.1 \cdot 10^{-8} \) |
\(a_{463}= +1.40753875 \pm 1 \cdot 10^{-8} \) | \(a_{464}= +0.39061573 \pm 1.5 \cdot 10^{-8} \) | \(a_{465}= -0.12202157 \pm 1 \cdot 10^{-8} \) |
\(a_{466}= +0.08197658 \pm 1.4 \cdot 10^{-8} \) | \(a_{467}= +1.29968630 \pm 1 \cdot 10^{-8} \) | \(a_{468}= -0.02036154 \pm 2.0 \cdot 10^{-8} \) |
\(a_{469}= -0.16632854 \pm 1.5 \cdot 10^{-8} \) | \(a_{470}= -0.39387799 \pm 1.8 \cdot 10^{-8} \) | \(a_{471}= +1.10941544 \pm 1 \cdot 10^{-8} \) |
\(a_{472}= -0.41193605 \pm 1.5 \cdot 10^{-8} \) | \(a_{473}= +0.44199045 \pm 1 \cdot 10^{-8} \) | \(a_{474}= +0.02457775 \pm 2.2 \cdot 10^{-8} \) |
\(a_{475}= -0.27108712 \pm 1 \cdot 10^{-8} \) | \(a_{476}= -0.10459968 \pm 1.3 \cdot 10^{-8} \) | \(a_{477}= +0.05453416 \pm 1 \cdot 10^{-8} \) |
\(a_{478}= +0.58474102 \pm 1.6 \cdot 10^{-8} \) | \(a_{479}= -0.32286527 \pm 1 \cdot 10^{-8} \) | \(a_{480}= +0.09517308 \pm 2.1 \cdot 10^{-8} \) |
\(a_{481}= -2.04645488 \pm 1 \cdot 10^{-8} \) | \(a_{482}= -1.00413292 \pm 1.5 \cdot 10^{-8} \) | \(a_{483}= -0.27210832 \pm 2.1 \cdot 10^{-8} \) |
\(a_{484}= +0.61608248 \pm 1.4 \cdot 10^{-8} \) | \(a_{485}= -0.12547043 \pm 1 \cdot 10^{-8} \) | \(a_{486}= +0.04616322 \pm 1.5 \cdot 10^{-8} \) |
\(a_{487}= +1.22535190 \pm 1 \cdot 10^{-8} \) | \(a_{488}= +0.36242254 \pm 1.3 \cdot 10^{-8} \) | \(a_{489}= +0.74404446 \pm 1 \cdot 10^{-8} \) |
\(a_{490}= -0.05529495 \pm 1.5 \cdot 10^{-8} \) | \(a_{491}= -1.69412915 \pm 1 \cdot 10^{-8} \) | \(a_{492}= -0.73985451 \pm 2.0 \cdot 10^{-8} \) |
\(a_{493}= -0.86480680 \pm 1 \cdot 10^{-8} \) | \(a_{494}= -0.34131501 \pm 2.0 \cdot 10^{-8} \) | \(a_{495}= -0.02670659 \pm 1 \cdot 10^{-8} \) |
\(a_{496}= +0.05666143 \pm 1.5 \cdot 10^{-8} \) | \(a_{497}= -0.16715726 \pm 1.7 \cdot 10^{-8} \) | \(a_{498}= +1.04989287 \pm 2.0 \cdot 10^{-8} \) |
\(a_{499}= -0.86638256 \pm 1 \cdot 10^{-8} \) | \(a_{500}= -0.46538234 \pm 1.4 \cdot 10^{-8} \) | \(a_{501}= +0.58850416 \pm 1 \cdot 10^{-8} \) |
\(a_{502}= +0.07488704 \pm 1.5 \cdot 10^{-8} \) | \(a_{503}= +1.48150040 \pm 1 \cdot 10^{-8} \) | \(a_{504}= +0.00436378 \pm 1.5 \cdot 10^{-8} \) |
\(a_{505}= -0.02492963 \pm 1 \cdot 10^{-8} \) | \(a_{506}= -0.77330071 \pm 1.9 \cdot 10^{-8} \) | \(a_{507}= -0.54599532 \pm 1 \cdot 10^{-8} \) |
\(a_{508}= -0.70817865 \pm 1.5 \cdot 10^{-8} \) | \(a_{509}= -0.11893133 \pm 1 \cdot 10^{-8} \) | \(a_{510}= -0.21070919 \pm 2.4 \cdot 10^{-8} \) |
\(a_{511}= -0.07871750 \pm 1.5 \cdot 10^{-8} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +0.39312660 \pm 1 \cdot 10^{-8} \) |
\(a_{514}= +0.05799627 \pm 1.5 \cdot 10^{-8} \) | \(a_{515}= +0.05708412 \pm 1 \cdot 10^{-8} \) | \(a_{516}= -0.14548236 \pm 2.1 \cdot 10^{-8} \) |
\(a_{517}= +1.52034209 \pm 1 \cdot 10^{-8} \) | \(a_{518}= +0.43858539 \pm 1.4 \cdot 10^{-8} \) | \(a_{519}= +0.42724455 \pm 1 \cdot 10^{-8} \) |
\(a_{520}= -0.24134458 \pm 2.0 \cdot 10^{-8} \) | \(a_{521}= -1.29167427 \pm 1 \cdot 10^{-8} \) | \(a_{522}= +0.03607874 \pm 2.0 \cdot 10^{-8} \) |
\(a_{523}= +0.62400611 \pm 1 \cdot 10^{-8} \) | \(a_{524}= -0.60510104 \pm 1.4 \cdot 10^{-8} \) | \(a_{525}= +0.26035388 \pm 2.0 \cdot 10^{-8} \) |
\(a_{526}= -1.11973474 \pm 1.5 \cdot 10^{-8} \) | \(a_{527}= -0.12544602 \pm 1 \cdot 10^{-8} \) | \(a_{528}= -0.36736158 \pm 2.1 \cdot 10^{-8} \) |
\(a_{529}= -0.46420269 \pm 1 \cdot 10^{-8} \) | \(a_{530}= +0.64639125 \pm 2.0 \cdot 10^{-8} \) | \(a_{531}= -0.03804797 \pm 1 \cdot 10^{-8} \) |
\(a_{532}= +0.07314883 \pm 1.5 \cdot 10^{-8} \) | \(a_{533}= +1.87615944 \pm 1 \cdot 10^{-8} \) | \(a_{534}= +0.53412336 \pm 2.0 \cdot 10^{-8} \) |
\(a_{535}= -0.65270662 \pm 1 \cdot 10^{-8} \) | \(a_{536}= +0.15558610 \pm 1.5 \cdot 10^{-8} \) | \(a_{537}= +0.44091085 \pm 1 \cdot 10^{-8} \) |
\(a_{538}= -0.67943265 \pm 1.5 \cdot 10^{-8} \) | \(a_{539}= +0.21343474 \pm 1.5 \cdot 10^{-8} \) | \(a_{540}= +0.27798067 \pm 2.0 \cdot 10^{-8} \) |
\(a_{541}= -1.91323807 \pm 1 \cdot 10^{-8} \) | \(a_{542}= -0.79567505 \pm 1.4 \cdot 10^{-8} \) | \(a_{543}= +0.29628451 \pm 1 \cdot 10^{-8} \) |
\(a_{544}= +0.09784404 \pm 1.3 \cdot 10^{-8} \) | \(a_{545}= +0.65366625 \pm 1 \cdot 10^{-8} \) | \(a_{546}= +0.32780122 \pm 2.1 \cdot 10^{-8} \) |
\(a_{547}= -1.23519530 \pm 1 \cdot 10^{-8} \) | \(a_{548}= -0.29526673 \pm 1.6 \cdot 10^{-8} \) | \(a_{549}= +0.03347472 \pm 1 \cdot 10^{-8} \) |
\(a_{550}= +0.73989593 \pm 1.9 \cdot 10^{-8} \) | \(a_{551}= +0.60477817 \pm 1 \cdot 10^{-8} \) | \(a_{552}= +0.25453403 \pm 2.1 \cdot 10^{-8} \) |
\(a_{553}= +0.01335726 \pm 1.6 \cdot 10^{-8} \) | \(a_{554}= +0.82527360 \pm 1.7 \cdot 10^{-8} \) | \(a_{555}= +0.88350150 \pm 1 \cdot 10^{-8} \) |
\(a_{556}= +0.46976637 \pm 1.4 \cdot 10^{-8} \) | \(a_{557}= -0.85790664 \pm 1 \cdot 10^{-8} \) | \(a_{558}= +0.00523346 \pm 2.0 \cdot 10^{-8} \) |
\(a_{559}= +0.36892132 \pm 1 \cdot 10^{-8} \) | \(a_{560}= +0.05172369 \pm 1.5 \cdot 10^{-8} \) | \(a_{561}= +0.81332307 \pm 1 \cdot 10^{-8} \) |
\(a_{562}= +1.03883112 \pm 1.4 \cdot 10^{-8} \) | \(a_{563}= -0.05186568 \pm 1 \cdot 10^{-8} \) | \(a_{564}= -0.50042472 \pm 2.0 \cdot 10^{-8} \) |
\(a_{565}= -0.04066332 \pm 1 \cdot 10^{-8} \) | \(a_{566}= +0.51580697 \pm 1.5 \cdot 10^{-8} \) | \(a_{567}= -0.36521879 \pm 1.5 \cdot 10^{-8} \) |
\(a_{568}= +0.15636130 \pm 1.7 \cdot 10^{-8} \) | \(a_{569}= +0.55002987 \pm 1 \cdot 10^{-8} \) | \(a_{570}= +0.14735352 \pm 2.6 \cdot 10^{-8} \) |
\(a_{571}= +0.74548955 \pm 1 \cdot 10^{-8} \) | \(a_{572}= +0.93157355 \pm 2.0 \cdot 10^{-8} \) | \(a_{573}= -0.49721568 \pm 1 \cdot 10^{-8} \) |
\(a_{574}= -0.40208857 \pm 1.3 \cdot 10^{-8} \) | \(a_{575}= -0.51265212 \pm 1 \cdot 10^{-8} \) | \(a_{576}= -0.00408194 \pm 1.5 \cdot 10^{-8} \) |
\(a_{577}= +0.54037840 \pm 1 \cdot 10^{-8} \) | \(a_{578}= +0.49048419 \pm 1.4 \cdot 10^{-8} \) | \(a_{579}= -1.24943838 \pm 1 \cdot 10^{-8} \) |
\(a_{580}= +0.42763995 \pm 2.0 \cdot 10^{-8} \) | \(a_{581}= +0.57058505 \pm 1.4 \cdot 10^{-8} \) | \(a_{582}= -0.15941105 \pm 2.0 \cdot 10^{-8} \) |
\(a_{583}= -2.49502597 \pm 1 \cdot 10^{-8} \) | \(a_{584}= +0.07363348 \pm 1.5 \cdot 10^{-8} \) | \(a_{585}= -0.02229150 \pm 1 \cdot 10^{-8} \) |
\(a_{586}= -1.12345300 \pm 1.3 \cdot 10^{-8} \) | \(a_{587}= -0.42453358 \pm 1 \cdot 10^{-8} \) | \(a_{588}= -0.07025262 \pm 1.6 \cdot 10^{-8} \) |
\(a_{589}= +0.08772712 \pm 1 \cdot 10^{-8} \) | \(a_{590}= -0.45098109 \pm 2.0 \cdot 10^{-8} \) | \(a_{591}= -0.73865569 \pm 1 \cdot 10^{-8} \) |
\(a_{592}= -0.41025906 \pm 1.4 \cdot 10^{-8} \) | \(a_{593}= -1.41853432 \pm 1 \cdot 10^{-8} \) | \(a_{594}= -1.07298635 \pm 2.0 \cdot 10^{-8} \) |
\(a_{595}= -0.11451408 \pm 1.8 \cdot 10^{-8} \) | \(a_{596}= +0.32700879 \pm 1.3 \cdot 10^{-8} \) | \(a_{597}= +1.03290344 \pm 1 \cdot 10^{-8} \) |
\(a_{598}= -0.64545990 \pm 1.9 \cdot 10^{-8} \) | \(a_{599}= +0.42548571 \pm 1 \cdot 10^{-8} \) | \(a_{600}= -0.24353875 \pm 2.0 \cdot 10^{-8} \) |
\(a_{601}= -1.27153562 \pm 1 \cdot 10^{-8} \) | \(a_{602}= -0.07906526 \pm 1.5 \cdot 10^{-8} \) | \(a_{603}= +0.01437052 \pm 1 \cdot 10^{-8} \) |
\(a_{604}= +0.52170054 \pm 1.4 \cdot 10^{-8} \) | \(a_{605}= +0.67447738 \pm 1 \cdot 10^{-8} \) | \(a_{606}= -0.03167327 \pm 2.2 \cdot 10^{-8} \) |
\(a_{607}= +0.64724496 \pm 1 \cdot 10^{-8} \) | \(a_{608}= -0.06842446 \pm 1.5 \cdot 10^{-8} \) | \(a_{609}= -0.58083300 \pm 2.2 \cdot 10^{-8} \) |
\(a_{610}= +0.39677449 \pm 1.8 \cdot 10^{-8} \) | \(a_{611}= +1.26900162 \pm 1 \cdot 10^{-8} \) | \(a_{612}= +0.00903725 \pm 1.8 \cdot 10^{-8} \) |
\(a_{613}= +0.38527484 \pm 1 \cdot 10^{-8} \) | \(a_{614}= +0.10520874 \pm 1.4 \cdot 10^{-8} \) | \(a_{615}= -0.80998105 \pm 1 \cdot 10^{-8} \) |
\(a_{616}= -0.19964991 \pm 1.5 \cdot 10^{-8} \) | \(a_{617}= -1.29680202 \pm 1 \cdot 10^{-8} \) | \(a_{618}= +0.07252576 \pm 2.0 \cdot 10^{-8} \) |
\(a_{619}= +1.61761243 \pm 1 \cdot 10^{-8} \) | \(a_{620}= +0.06203204 \pm 2.0 \cdot 10^{-8} \) | \(a_{621}= +0.74344067 \pm 1 \cdot 10^{-8} \) |
\(a_{622}= +0.84221245 \pm 1.5 \cdot 10^{-8} \) | \(a_{623}= +0.29027991 \pm 1.3 \cdot 10^{-8} \) | \(a_{624}= -0.30662996 \pm 2.1 \cdot 10^{-8} \) |
\(a_{625}= +0.19086862 \pm 1 \cdot 10^{-8} \) | \(a_{626}= +0.88126585 \pm 1.3 \cdot 10^{-8} \) | \(a_{627}= -0.56877448 \pm 1 \cdot 10^{-8} \) |
\(a_{628}= -0.56399289 \pm 1.4 \cdot 10^{-8} \) | \(a_{629}= +0.90829630 \pm 1 \cdot 10^{-8} \) | \(a_{630}= +0.00477740 \pm 2.0 \cdot 10^{-8} \) |
\(a_{631}= +0.94292308 \pm 1 \cdot 10^{-8} \) | \(a_{632}= -0.01249458 \pm 1.6 \cdot 10^{-8} \) | \(a_{633}= +1.19039682 \pm 1 \cdot 10^{-8} \) |
\(a_{634}= -0.33678624 \pm 1.5 \cdot 10^{-8} \) | \(a_{635}= -0.77530282 \pm 1 \cdot 10^{-8} \) | \(a_{636}= +0.82124457 \pm 2.1 \cdot 10^{-8} \) |
\(a_{637}= +0.17815005 \pm 1.5 \cdot 10^{-8} \) | \(a_{638}= -1.65066092 \pm 2.0 \cdot 10^{-8} \) | \(a_{639}= +0.01444212 \pm 1 \cdot 10^{-8} \) |
\(a_{640}= -0.04838308 \pm 1.5 \cdot 10^{-8} \) | \(a_{641}= +0.06796071 \pm 1 \cdot 10^{-8} \) | \(a_{642}= -0.82926829 \pm 2.0 \cdot 10^{-8} \) |
\(a_{643}= -0.44634869 \pm 1 \cdot 10^{-8} \) | \(a_{644}= +0.13833155 \pm 1.4 \cdot 10^{-8} \) | \(a_{645}= -0.15927179 \pm 1 \cdot 10^{-8} \) |
\(a_{646}= +0.15148888 \pm 1.8 \cdot 10^{-8} \) | \(a_{647}= -0.20986031 \pm 1 \cdot 10^{-8} \) | \(a_{648}= +0.34163089 \pm 1.5 \cdot 10^{-8} \) |
\(a_{649}= +1.74075614 \pm 1 \cdot 10^{-8} \) | \(a_{650}= +0.61757754 \pm 1.8 \cdot 10^{-8} \) | \(a_{651}= -0.08425371 \pm 2.2 \cdot 10^{-8} \) |
\(a_{652}= -0.37824946 \pm 1.4 \cdot 10^{-8} \) | \(a_{653}= -0.21171827 \pm 1 \cdot 10^{-8} \) | \(a_{654}= +0.83048751 \pm 2.0 \cdot 10^{-8} \) |
\(a_{655}= -0.66245508 \pm 1 \cdot 10^{-8} \) | \(a_{656}= +0.37611942 \pm 1.3 \cdot 10^{-8} \) | \(a_{657}= +0.00680107 \pm 1 \cdot 10^{-8} \) |
\(a_{658}= -0.27196571 \pm 1.4 \cdot 10^{-8} \) | \(a_{659}= -0.11925960 \pm 1 \cdot 10^{-8} \) | \(a_{660}= -0.40218166 \pm 2.6 \cdot 10^{-8} \) |
\(a_{661}= +1.29966988 \pm 1 \cdot 10^{-8} \) | \(a_{662}= -0.54679311 \pm 1.4 \cdot 10^{-8} \) | \(a_{663}= +0.67886583 \pm 1 \cdot 10^{-8} \) |
\(a_{664}= -0.53373344 \pm 1.4 \cdot 10^{-8} \) | \(a_{665}= +0.08008218 \pm 2.0 \cdot 10^{-8} \) | \(a_{666}= -0.03789308 \pm 1.9 \cdot 10^{-8} \) |
\(a_{667}= +1.14369438 \pm 1 \cdot 10^{-8} \) | \(a_{668}= -0.29917752 \pm 1.5 \cdot 10^{-8} \) | \(a_{669}= -0.84235777 \pm 1 \cdot 10^{-8} \) |
\(a_{670}= +0.17033321 \pm 2.0 \cdot 10^{-8} \) | \(a_{671}= -1.53152235 \pm 1 \cdot 10^{-8} \) | \(a_{672}= +0.06571531 \pm 1.6 \cdot 10^{-8} \) |
\(a_{673}= -1.30146695 \pm 1 \cdot 10^{-8} \) | \(a_{674}= -0.49095781 \pm 1.5 \cdot 10^{-8} \) | \(a_{675}= -0.71132577 \pm 1 \cdot 10^{-8} \) |
\(a_{676}= +0.27756733 \pm 1.5 \cdot 10^{-8} \) | \(a_{677}= +0.44531046 \pm 1 \cdot 10^{-8} \) | \(a_{678}= -0.05166304 \pm 2.2 \cdot 10^{-8} \) |
\(a_{679}= -0.08663509 \pm 1.4 \cdot 10^{-8} \) | \(a_{680}= +0.10711811 \pm 1.8 \cdot 10^{-8} \) | \(a_{681}= +0.55530811 \pm 1 \cdot 10^{-8} \) |
\(a_{682}= -0.23943942 \pm 2.0 \cdot 10^{-8} \) | \(a_{683}= -0.30564065 \pm 1 \cdot 10^{-8} \) | \(a_{684}= -0.00631994 \pm 2.0 \cdot 10^{-8} \) |
\(a_{685}= -0.32325336 \pm 1 \cdot 10^{-8} \) | \(a_{686}= -0.03818018 \pm 1.3 \cdot 10^{-6} \) | \(a_{687}= +0.59663885 \pm 1 \cdot 10^{-8} \) |
\(a_{688}= +0.07395878 \pm 1.5 \cdot 10^{-8} \) | \(a_{689}= -2.08255235 \pm 1 \cdot 10^{-8} \) | \(a_{690}= +0.27865984 \pm 2.6 \cdot 10^{-8} \) |
\(a_{691}= +0.19281191 \pm 1 \cdot 10^{-8} \) | \(a_{692}= -0.21719807 \pm 1.6 \cdot 10^{-8} \) | \(a_{693}= -0.01844042 \pm 2.0 \cdot 10^{-8} \) |
\(a_{694}= +0.41484804 \pm 1.5 \cdot 10^{-8} \) | \(a_{695}= +0.51429282 \pm 1 \cdot 10^{-8} \) | \(a_{696}= +0.54331952 \pm 2.2 \cdot 10^{-8} \) |
\(a_{697}= -0.83271256 \pm 1 \cdot 10^{-8} \) | \(a_{698}= +1.14201040 \pm 1.5 \cdot 10^{-8} \) | \(a_{699}= +0.11402377 \pm 1 \cdot 10^{-8} \) |
\(a_{700}= -0.13235595 \pm 1.4 \cdot 10^{-8} \) | \(a_{701}= -0.77111136 \pm 1 \cdot 10^{-8} \) | \(a_{702}= -0.89560200 \pm 1.9 \cdot 10^{-8} \) |
\(a_{703}= -0.63519132 \pm 1 \cdot 10^{-8} \) | \(a_{704}= +0.18675539 \pm 1.5 \cdot 10^{-8} \) | \(a_{705}= -0.54785710 \pm 1 \cdot 10^{-8} \) |
\(a_{706}= +0.95644314 \pm 1.3 \cdot 10^{-8} \) | \(a_{707}= -0.01721347 \pm 1.5 \cdot 10^{-8} \) | \(a_{708}= -0.57297461 \pm 2.1 \cdot 10^{-8} \) |
\(a_{709}= +0.87652463 \pm 1 \cdot 10^{-8} \) | \(a_{710}= +0.17118189 \pm 2.2 \cdot 10^{-8} \) | \(a_{711}= -0.00115405 \pm 1 \cdot 10^{-8} \) |
\(a_{712}= -0.27153199 \pm 1.3 \cdot 10^{-8} \) | \(a_{713}= +0.16590053 \pm 1 \cdot 10^{-8} \) | \(a_{714}= -0.14549093 \pm 2.0 \cdot 10^{-8} \) |
\(a_{715}= +1.01987203 \pm 1 \cdot 10^{-8} \) | \(a_{716}= -0.22414560 \pm 1.4 \cdot 10^{-8} \) | \(a_{717}= +0.81333438 \pm 1 \cdot 10^{-8} \) |
\(a_{718}= +0.57705049 \pm 1.6 \cdot 10^{-8} \) | \(a_{719}= -0.78385571 \pm 1 \cdot 10^{-8} \) | \(a_{720}= -0.00446884 \pm 2.0 \cdot 10^{-8} \) |
\(a_{721}= +0.03941556 \pm 1.4 \cdot 10^{-8} \) | \(a_{722}= +0.60116732 \pm 1.4 \cdot 10^{-8} \) | \(a_{723}= -1.39667957 \pm 1 \cdot 10^{-8} \) |
\(a_{724}= -0.15062199 \pm 1.4 \cdot 10^{-8} \) | \(a_{725}= -1.09428947 \pm 1 \cdot 10^{-8} \) | \(a_{726}= +0.85692819 \pm 2.1 \cdot 10^{-8} \) |
\(a_{727}= +1.03711671 \pm 1 \cdot 10^{-8} \) | \(a_{728}= -0.16664412 \pm 1.5 \cdot 10^{-8} \) | \(a_{729}= +1.03048794 \pm 1 \cdot 10^{-8} \) |
\(a_{730}= +0.08061277 \pm 2.0 \cdot 10^{-8} \) | \(a_{731}= -0.16374163 \pm 1 \cdot 10^{-8} \) | \(a_{732}= +0.50410474 \pm 1.9 \cdot 10^{-8} \) |
\(a_{733}= -0.22924761 \pm 1 \cdot 10^{-8} \) | \(a_{734}= +0.81779833 \pm 1.3 \cdot 10^{-8} \) | \(a_{735}= -0.07691146 \pm 2.1 \cdot 10^{-8} \) |
\(a_{736}= -0.12939732 \pm 1.4 \cdot 10^{-8} \) | \(a_{737}= -0.65747452 \pm 1 \cdot 10^{-8} \) | \(a_{738}= +0.03473981 \pm 1.8 \cdot 10^{-8} \) |
\(a_{739}= +1.56650225 \pm 1 \cdot 10^{-8} \) | \(a_{740}= -0.44914515 \pm 1.9 \cdot 10^{-8} \) | \(a_{741}= -0.47474561 \pm 1 \cdot 10^{-8} \) |
\(a_{742}= +0.44632160 \pm 1.5 \cdot 10^{-8} \) | \(a_{743}= +1.69502435 \pm 1 \cdot 10^{-8} \) | \(a_{744}= +0.07881213 \pm 2.2 \cdot 10^{-8} \) |
\(a_{745}= +0.35800407 \pm 1 \cdot 10^{-8} \) | \(a_{746}= -0.24643898 \pm 1.6 \cdot 10^{-8} \) | \(a_{747}= -0.04929764 \pm 1 \cdot 10^{-8} \) |
\(a_{748}= -0.41346858 \pm 1.8 \cdot 10^{-8} \) | \(a_{749}= -0.45068226 \pm 1.4 \cdot 10^{-8} \) | \(a_{750}= -0.64731471 \pm 2.0 \cdot 10^{-8} \) |
\(a_{751}= -0.35651531 \pm 1 \cdot 10^{-8} \) | \(a_{752}= +0.25440063 \pm 1.4 \cdot 10^{-8} \) | \(a_{753}= +0.10416271 \pm 1 \cdot 10^{-8} \) |
\(a_{754}= -1.37777635 \pm 2.0 \cdot 10^{-8} \) | \(a_{755}= +0.57114952 \pm 1 \cdot 10^{-8} \) | \(a_{756}= +0.19194068 \pm 1.5 \cdot 10^{-8} \) |
\(a_{757}= +0.31679105 \pm 1 \cdot 10^{-8} \) | \(a_{758}= -0.53077229 \pm 1.6 \cdot 10^{-8} \) | \(a_{759}= -1.07560790 \pm 1 \cdot 10^{-8} \) |
\(a_{760}= -0.07491002 \pm 2.0 \cdot 10^{-8} \) | \(a_{761}= +0.75238954 \pm 1 \cdot 10^{-8} \) | \(a_{762}= -0.98502761 \pm 2.1 \cdot 10^{-8} \) |
\(a_{763}= +0.45134486 \pm 1.4 \cdot 10^{-8} \) | \(a_{764}= +0.25276925 \pm 1.3 \cdot 10^{-8} \) | \(a_{765}= +0.00989383 \pm 1 \cdot 10^{-8} \) |
\(a_{766}= -0.58262925 \pm 1.4 \cdot 10^{-8} \) | \(a_{767}= +1.45297718 \pm 1 \cdot 10^{-8} \) | \(a_{768}= -0.06147104 \pm 1.6 \cdot 10^{-8} \) |
\(a_{769}= -1.22220056 \pm 1 \cdot 10^{-8} \) | \(a_{770}= -0.21857358 \pm 2.0 \cdot 10^{-8} \) | \(a_{771}= +0.08066880 \pm 1 \cdot 10^{-8} \) |
\(a_{772}= +0.63517628 \pm 1.4 \cdot 10^{-8} \) | \(a_{773}= +0.24435652 \pm 1 \cdot 10^{-8} \) | \(a_{774}= +0.00683111 \pm 2.0 \cdot 10^{-8} \) |
\(a_{775}= -0.15873401 \pm 1 \cdot 10^{-8} \) | \(a_{776}= +0.08103970 \pm 1.4 \cdot 10^{-8} \) | \(a_{777}= +0.61004199 \pm 2.0 \cdot 10^{-8} \) |
\(a_{778}= +0.81294490 \pm 1.5 \cdot 10^{-8} \) | \(a_{779}= +0.58233397 \pm 1 \cdot 10^{-8} \) | \(a_{780}= -0.33569365 \pm 2.6 \cdot 10^{-8} \) |
\(a_{781}= -0.66075037 \pm 1 \cdot 10^{-8} \) | \(a_{782}= +0.28648022 \pm 1.8 \cdot 10^{-8} \) | \(a_{783}= +1.58692271 \pm 1 \cdot 10^{-8} \) |
\(a_{784}= +0.03571429 \pm 1.4 \cdot 10^{-6} \) | \(a_{785}= -0.61745053 \pm 1 \cdot 10^{-8} \) | \(a_{786}= -0.84165377 \pm 2.0 \cdot 10^{-8} \) |
\(a_{787}= -0.90622424 \pm 1 \cdot 10^{-8} \) | \(a_{788}= +0.37550997 \pm 1.6 \cdot 10^{-8} \) | \(a_{789}= -1.55747372 \pm 1 \cdot 10^{-8} \) |
\(a_{790}= -0.01367886 \pm 2.1 \cdot 10^{-8} \) | \(a_{791}= -0.02807730 \pm 1.6 \cdot 10^{-8} \) | \(a_{792}= +0.01724943 \pm 2.0 \cdot 10^{-8} \) |
\(a_{793}= -1.27833358 \pm 1 \cdot 10^{-8} \) | \(a_{794}= -0.62444343 \pm 1.4 \cdot 10^{-8} \) | \(a_{795}= +0.89908560 \pm 1 \cdot 10^{-8} \) |
\(a_{796}= -0.52509653 \pm 1.4 \cdot 10^{-8} \) | \(a_{797}= +0.86195676 \pm 1 \cdot 10^{-8} \) | \(a_{798}= +0.10174497 \pm 2.1 \cdot 10^{-8} \) |
\(a_{799}= -0.56323229 \pm 1 \cdot 10^{-8} \) | \(a_{800}= +0.12380766 \pm 1.4 \cdot 10^{-8} \) | \(a_{801}= -0.02507972 \pm 1 \cdot 10^{-8} \) |
\(a_{802}= -1.12400102 \pm 1.5 \cdot 10^{-8} \) | \(a_{803}= -0.31115979 \pm 1 \cdot 10^{-8} \) | \(a_{804}= +0.21640952 \pm 2.1 \cdot 10^{-8} \) |
\(a_{805}= +0.15144320 \pm 1.9 \cdot 10^{-8} \) | \(a_{806}= -0.19985568 \pm 2.0 \cdot 10^{-8} \) | \(a_{807}= -0.94504391 \pm 1 \cdot 10^{-8} \) |
\(a_{808}= +0.01610172 \pm 1.5 \cdot 10^{-8} \) | \(a_{809}= +1.21344679 \pm 1 \cdot 10^{-8} \) | \(a_{810}= +0.37401212 \pm 2.0 \cdot 10^{-8} \) |
\(a_{811}= -1.71781455 \pm 1 \cdot 10^{-8} \) | \(a_{812}= +0.29527774 \pm 1.5 \cdot 10^{-8} \) | \(a_{813}= -1.10672906 \pm 1 \cdot 10^{-8} \) |
\(a_{814}= +1.73366954 \pm 1.9 \cdot 10^{-8} \) | \(a_{815}= -0.41410154 \pm 1 \cdot 10^{-8} \) | \(a_{816}= +0.13609431 \pm 2.0 \cdot 10^{-8} \) |
\(a_{817}= +0.11450808 \pm 1 \cdot 10^{-8} \) | \(a_{818}= -0.55293045 \pm 1.6 \cdot 10^{-8} \) | \(a_{819}= -0.01539188 \pm 2.0 \cdot 10^{-8} \) |
\(a_{820}= +0.41176961 \pm 1.8 \cdot 10^{-8} \) | \(a_{821}= +1.47940609 \pm 1 \cdot 10^{-8} \) | \(a_{822}= -0.41069563 \pm 2.2 \cdot 10^{-8} \) |
\(a_{823}= +0.39666190 \pm 1 \cdot 10^{-8} \) | \(a_{824}= -0.03686988 \pm 1.4 \cdot 10^{-8} \) | \(a_{825}= +1.02914416 \pm 1 \cdot 10^{-8} \) |
\(a_{826}= -0.31139438 \pm 1.5 \cdot 10^{-8} \) | \(a_{827}= -1.40172397 \pm 1 \cdot 10^{-8} \) | \(a_{828}= -0.01195163 \pm 1.9 \cdot 10^{-8} \) |
\(a_{829}= -0.92484723 \pm 1 \cdot 10^{-8} \) | \(a_{830}= -0.58432295 \pm 1.9 \cdot 10^{-8} \) | \(a_{831}= +1.14789860 \pm 1 \cdot 10^{-8} \) |
\(a_{832}= +0.15588130 \pm 1.5 \cdot 10^{-8} \) | \(a_{833}= -0.07906993 \pm 1.3 \cdot 10^{-8} \) | \(a_{834}= +0.65341260 \pm 2.1 \cdot 10^{-8} \) |
\(a_{835}= -0.32753484 \pm 1 \cdot 10^{-8} \) | \(a_{836}= +0.28914756 \pm 2.0 \cdot 10^{-8} \) | \(a_{837}= +0.23019376 \pm 1 \cdot 10^{-8} \) |
\(a_{838}= +0.53419927 \pm 1.4 \cdot 10^{-8} \) | \(a_{839}= +0.57716132 \pm 1 \cdot 10^{-8} \) | \(a_{840}= +0.07194409 \pm 2.1 \cdot 10^{-8} \) |
\(a_{841}= +1.44129043 \pm 1 \cdot 10^{-8} \) | \(a_{842}= +0.48395614 \pm 1.4 \cdot 10^{-8} \) | \(a_{843}= +1.44494237 \pm 1 \cdot 10^{-8} \) |
\(a_{844}= -0.60516135 \pm 1.6 \cdot 10^{-8} \) | \(a_{845}= +0.30387634 \pm 1 \cdot 10^{-8} \) | \(a_{846}= +0.02349740 \pm 1.9 \cdot 10^{-8} \) |
\(a_{847}= +0.46571458 \pm 1.4 \cdot 10^{-8} \) | \(a_{848}= -0.41749563 \pm 1.5 \cdot 10^{-8} \) | \(a_{849}= +0.71745188 \pm 1 \cdot 10^{-8} \) |
\(a_{850}= -0.27410494 \pm 1.7 \cdot 10^{-8} \) | \(a_{851}= -1.20120861 \pm 1 \cdot 10^{-8} \) | \(a_{852}= +0.21748778 \pm 2.3 \cdot 10^{-8} \) |
\(a_{853}= -0.73535962 \pm 1 \cdot 10^{-8} \) | \(a_{854}= +0.27396569 \pm 1.3 \cdot 10^{-8} \) | \(a_{855}= -0.00691897 \pm 1 \cdot 10^{-8} \) |
\(a_{856}= +0.42157465 \pm 1.4 \cdot 10^{-8} \) | \(a_{857}= +1.79995547 \pm 1 \cdot 10^{-8} \) | \(a_{858}= +1.29575449 \pm 2.6 \cdot 10^{-8} \) |
\(a_{859}= -0.79485068 \pm 1 \cdot 10^{-8} \) | \(a_{860}= +0.08096891 \pm 2.0 \cdot 10^{-8} \) | \(a_{861}= -0.55927744 \pm 2.0 \cdot 10^{-8} \) |
\(a_{862}= +0.27425404 \pm 1.4 \cdot 10^{-8} \) | \(a_{863}= -0.57103516 \pm 1 \cdot 10^{-8} \) | \(a_{864}= -0.17954407 \pm 1.5 \cdot 10^{-8} \) |
\(a_{865}= -0.23778502 \pm 1 \cdot 10^{-8} \) | \(a_{866}= -0.19620283 \pm 1.6 \cdot 10^{-8} \) | \(a_{867}= +0.68222965 \pm 1 \cdot 10^{-8} \) |
\(a_{868}= +0.04283201 \pm 1.5 \cdot 10^{-8} \) | \(a_{869}= +0.05279948 \pm 1 \cdot 10^{-8} \) | \(a_{870}= +0.59481764 \pm 2.7 \cdot 10^{-8} \) |
\(a_{871}= -0.54878191 \pm 1 \cdot 10^{-8} \) | \(a_{872}= -0.42219446 \pm 1.4 \cdot 10^{-8} \) | \(a_{873}= +0.00748513 \pm 1 \cdot 10^{-8} \) |
\(a_{874}= -0.20034184 \pm 1.9 \cdot 10^{-8} \) | \(a_{875}= -0.35179598 \pm 1.4 \cdot 10^{-8} \) | \(a_{876}= +0.10241909 \pm 2.1 \cdot 10^{-8} \) |
\(a_{877}= -1.45219315 \pm 1 \cdot 10^{-8} \) | \(a_{878}= +0.44197450 \pm 1.6 \cdot 10^{-8} \) | \(a_{879}= -1.56264556 \pm 1 \cdot 10^{-8} \) |
\(a_{880}= +0.20445686 \pm 2.0 \cdot 10^{-8} \) | \(a_{881}= +1.17823416 \pm 1 \cdot 10^{-8} \) | \(a_{882}= +0.00329871 \pm 1.5 \cdot 10^{-8} \) |
\(a_{883}= -0.58060247 \pm 1 \cdot 10^{-8} \) | \(a_{884}= -0.34511463 \pm 1.8 \cdot 10^{-8} \) | \(a_{885}= -0.62728356 \pm 1 \cdot 10^{-8} \) |
\(a_{886}= -0.57030356 \pm 1.5 \cdot 10^{-8} \) | \(a_{887}= -0.51458706 \pm 1 \cdot 10^{-8} \) | \(a_{888}= -0.57064203 \pm 2.0 \cdot 10^{-8} \) |
\(a_{889}= -0.53533274 \pm 1.5 \cdot 10^{-8} \) | \(a_{890}= -0.29726894 \pm 1.8 \cdot 10^{-8} \) | \(a_{891}= -1.44366117 \pm 1 \cdot 10^{-8} \) |
\(a_{892}= +0.42822894 \pm 1.4 \cdot 10^{-8} \) | \(a_{893}= +0.39388057 \pm 1 \cdot 10^{-8} \) | \(a_{894}= +0.45484665 \pm 2.0 \cdot 10^{-8} \) |
\(a_{895}= -0.24539107 \pm 1 \cdot 10^{-8} \) | \(a_{896}= -0.03340766 \pm 1.6 \cdot 10^{-6} \) | \(a_{897}= -0.89779016 \pm 1 \cdot 10^{-8} \) |
\(a_{898}= -0.33261581 \pm 1.5 \cdot 10^{-8} \) | \(a_{899}= +0.35412552 \pm 1 \cdot 10^{-8} \) | \(a_{900}= +0.01143534 \pm 1.9 \cdot 10^{-8} \) |
\(a_{901}= +0.92431776 \pm 1 \cdot 10^{-8} \) | \(a_{902}= -1.58940249 \pm 1.8 \cdot 10^{-8} \) | \(a_{903}= -0.10997433 \pm 2.1 \cdot 10^{-8} \) |
\(a_{904}= +0.02626391 \pm 1.6 \cdot 10^{-8} \) | \(a_{905}= -0.16489858 \pm 1 \cdot 10^{-8} \) | \(a_{906}= +0.72564943 \pm 2.1 \cdot 10^{-8} \) |
\(a_{907}= +0.35971867 \pm 1 \cdot 10^{-8} \) | \(a_{908}= -0.28230167 \pm 1.5 \cdot 10^{-8} \) | \(a_{909}= +0.00148722 \pm 1 \cdot 10^{-8} \) |
\(a_{910}= -0.18243935 \pm 2.0 \cdot 10^{-8} \) | \(a_{911}= -0.76287387 \pm 1 \cdot 10^{-8} \) | \(a_{912}= -0.09517370 \pm 2.1 \cdot 10^{-8} \) |
\(a_{913}= +2.25544660 \pm 1 \cdot 10^{-8} \) | \(a_{914}= +0.68210460 \pm 1.6 \cdot 10^{-8} \) | \(a_{915}= +0.55188592 \pm 1 \cdot 10^{-8} \) |
\(a_{916}= -0.30331295 \pm 1.4 \cdot 10^{-8} \) | \(a_{917}= -0.45741339 \pm 1.4 \cdot 10^{-8} \) | \(a_{918}= +0.39750301 \pm 1.8 \cdot 10^{-8} \) |
\(a_{919}= +1.96731068 \pm 1 \cdot 10^{-8} \) | \(a_{920}= -0.14166214 \pm 1.9 \cdot 10^{-8} \) | \(a_{921}= +0.14633809 \pm 1 \cdot 10^{-8} \) |
\(a_{922}= +0.38221399 \pm 1.3 \cdot 10^{-8} \) | \(a_{923}= -0.55151620 \pm 1 \cdot 10^{-8} \) | \(a_{924}= -0.27769925 \pm 2.1 \cdot 10^{-8} \) |
\(a_{925}= +1.14931922 \pm 1 \cdot 10^{-8} \) | \(a_{926}= -0.99528020 \pm 1.6 \cdot 10^{-8} \) | \(a_{927}= -0.00340544 \pm 1 \cdot 10^{-8} \) |
\(a_{928}= -0.27620703 \pm 1.5 \cdot 10^{-8} \) | \(a_{929}= -0.49340397 \pm 1 \cdot 10^{-8} \) | \(a_{930}= +0.08628228 \pm 2.7 \cdot 10^{-8} \) |
\(a_{931}= +0.05529532 \pm 1.5 \cdot 10^{-8} \) | \(a_{932}= -0.05796620 \pm 1.4 \cdot 10^{-8} \) | \(a_{933}= +1.17145938 \pm 1 \cdot 10^{-8} \) |
\(a_{934}= -0.91901700 \pm 1.6 \cdot 10^{-8} \) | \(a_{935}= -0.45265889 \pm 1 \cdot 10^{-8} \) | \(a_{936}= +0.01439779 \pm 2.0 \cdot 10^{-8} \) |
\(a_{937}= -0.61750233 \pm 1 \cdot 10^{-8} \) | \(a_{938}= +0.11761204 \pm 1.5 \cdot 10^{-8} \) | \(a_{939}= +1.22577996 \pm 1 \cdot 10^{-8} \) |
\(a_{940}= +0.27851380 \pm 1.8 \cdot 10^{-8} \) | \(a_{941}= -0.11863610 \pm 1 \cdot 10^{-8} \) | \(a_{942}= -0.78447518 \pm 2.0 \cdot 10^{-8} \) |
\(a_{943}= +1.10125022 \pm 1 \cdot 10^{-8} \) | \(a_{944}= +0.29128277 \pm 1.5 \cdot 10^{-8} \) | \(a_{945}= +0.21013363 \pm 2.0 \cdot 10^{-8} \) |
\(a_{946}= -0.31253445 \pm 2.0 \cdot 10^{-8} \) | \(a_{947}= +1.46727502 \pm 1 \cdot 10^{-8} \) | \(a_{948}= -0.01737909 \pm 2.2 \cdot 10^{-8} \) |
\(a_{949}= -0.25971936 \pm 1 \cdot 10^{-8} \) | \(a_{950}= +0.19168754 \pm 1.9 \cdot 10^{-8} \) | \(a_{951}= -0.46844641 \pm 1 \cdot 10^{-8} \) |
\(a_{952}= +0.07396314 \pm 1.3 \cdot 10^{-8} \) | \(a_{953}= +0.20448049 \pm 1 \cdot 10^{-8} \) | \(a_{954}= -0.03856147 \pm 2.0 \cdot 10^{-8} \) |
\(a_{955}= +0.27672779 \pm 1 \cdot 10^{-8} \) | \(a_{956}= -0.41347434 \pm 1.6 \cdot 10^{-8} \) | \(a_{957}= -2.29595538 \pm 1 \cdot 10^{-8} \) |
\(a_{958}= +0.22830023 \pm 1.5 \cdot 10^{-8} \) | \(a_{959}= -0.22320067 \pm 1.6 \cdot 10^{-8} \) | \(a_{960}= -0.06729753 \pm 2.1 \cdot 10^{-8} \) |
\(a_{961}= -0.94863172 \pm 1 \cdot 10^{-8} \) | \(a_{962}= +1.44706212 \pm 1.9 \cdot 10^{-8} \) | \(a_{963}= +0.03893823 \pm 1 \cdot 10^{-8} \) |
\(a_{964}= +0.71002920 \pm 1.5 \cdot 10^{-8} \) | \(a_{965}= +0.69538097 \pm 1 \cdot 10^{-8} \) | \(a_{966}= +0.19240964 \pm 2.1 \cdot 10^{-8} \) |
\(a_{967}= -1.54846214 \pm 1 \cdot 10^{-8} \) | \(a_{968}= -0.43563610 \pm 1.4 \cdot 10^{-8} \) | \(a_{969}= +0.21071057 \pm 1 \cdot 10^{-8} \) |
\(a_{970}= +0.08872099 \pm 1.9 \cdot 10^{-8} \) | \(a_{971}= +1.23756363 \pm 1 \cdot 10^{-8} \) | \(a_{972}= -0.03264232 \pm 1.5 \cdot 10^{-8} \) |
\(a_{973}= +0.35511000 \pm 1.4 \cdot 10^{-8} \) | \(a_{974}= -0.86645464 \pm 1.4 \cdot 10^{-8} \) | \(a_{975}= +0.85900773 \pm 1 \cdot 10^{-8} \) |
\(a_{976}= -0.25627144 \pm 1.3 \cdot 10^{-8} \) | \(a_{977}= -0.80058057 \pm 1 \cdot 10^{-8} \) | \(a_{978}= -0.52611888 \pm 2.0 \cdot 10^{-8} \) |
\(a_{979}= +1.14743776 \pm 1 \cdot 10^{-8} \) | \(a_{980}= +0.03909944 \pm 1.5 \cdot 10^{-8} \) | \(a_{981}= -0.03899548 \pm 1 \cdot 10^{-8} \) |
\(a_{982}= +1.19793021 \pm 1.6 \cdot 10^{-8} \) | \(a_{983}= -0.02109768 \pm 1 \cdot 10^{-8} \) | \(a_{984}= +0.52315614 \pm 2.0 \cdot 10^{-8} \) |
\(a_{985}= +0.41110240 \pm 1 \cdot 10^{-8} \) | \(a_{986}= +0.61151075 \pm 1.9 \cdot 10^{-8} \) | \(a_{987}= -0.37828553 \pm 2.0 \cdot 10^{-8} \) |
\(a_{988}= +0.24134616 \pm 2.0 \cdot 10^{-8} \) | \(a_{989}= +0.21654592 \pm 1 \cdot 10^{-8} \) | \(a_{990}= +0.01888441 \pm 2.5 \cdot 10^{-8} \) |
\(a_{991}= +0.93643146 \pm 1 \cdot 10^{-8} \) | \(a_{992}= -0.04006568 \pm 1.5 \cdot 10^{-8} \) | \(a_{993}= -0.76055146 \pm 1 \cdot 10^{-8} \) |
\(a_{994}= +0.11819803 \pm 1.7 \cdot 10^{-8} \) | \(a_{995}= -0.57486740 \pm 1 \cdot 10^{-8} \) | \(a_{996}= -0.74238637 \pm 2.0 \cdot 10^{-8} \) |
\(a_{997}= -1.78702641 \pm 1 \cdot 10^{-8} \) | \(a_{998}= +0.61262498 \pm 1.7 \cdot 10^{-8} \) | \(a_{999}= -1.66672606 \pm 1 \cdot 10^{-8} \) |
\(a_{1000}= +0.32907501 \pm 1.4 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000