Maass form invariants
Level: | \( 2 \) |
Weight: | \( 0 \) |
Character: | 2.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(14.097203733919118562864404305 \pm 2 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -1.52313756 \pm 3.0 \cdot 10^{-7} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +0.53848903 \pm 2.2 \cdot 10^{-7} \) | \(a_{6}= -1.07702089 \pm 3.1 \cdot 10^{-7} \) |
\(a_{7}= +1.10504771 \pm 2.5 \cdot 10^{-7} \) | \(a_{8}= +0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +1.31994801 \pm 5.2 \cdot 10^{-7} \) |
\(a_{10}= +0.38076925 \pm 2.3 \cdot 10^{-7} \) | \(a_{11}= +1.06533591 \pm 7.4 \cdot 10^{-7} \) | \(a_{12}= -0.76156878 \pm 3.1 \cdot 10^{-7} \) |
\(a_{13}= +0.53069533 \pm 5.8 \cdot 10^{-7} \) | \(a_{14}= +0.78138673 \pm 2.6 \cdot 10^{-7} \) | \(a_{15}= -0.82019287 \pm 1.6 \cdot 10^{-7} \) |
\(a_{16}= +0.25 \) | \(a_{17}= -0.51927767 \pm 4.2 \cdot 10^{-7} \) | \(a_{18}= +0.93334419 \pm 5.3 \cdot 10^{-7} \) |
\(a_{19}= -0.12602366 \pm 3.0 \cdot 10^{-7} \) | \(a_{20}= +0.26924452 \pm 2.3 \cdot 10^{-7} \) | \(a_{21}= -1.68313967 \pm 1.2 \cdot 10^{-7} \) |
\(a_{22}= +0.75330624 \pm 7.5 \cdot 10^{-7} \) | \(a_{23}= +1.30256905 \pm 3.1 \cdot 10^{-7} \) | \(a_{24}= -0.53851045 \pm 3.1 \cdot 10^{-7} \) |
\(a_{25}= -0.71002956 \pm 5.8 \cdot 10^{-7} \) | \(a_{26}= +0.37525827 \pm 5.9 \cdot 10^{-7} \) | \(a_{27}= -0.48732484 \pm 4.7 \cdot 10^{-7} \) |
\(a_{28}= +0.55252386 \pm 2.6 \cdot 10^{-7} \) | \(a_{29}= -0.03435910 \pm 5.2 \cdot 10^{-7} \) | \(a_{30}= -0.57996394 \pm 5.4 \cdot 10^{-7} \) |
\(a_{31}= +1.31299756 \pm 6.1 \cdot 10^{-7} \) | \(a_{32}= +0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -1.62265313 \pm 2.9 \cdot 10^{-7} \) |
\(a_{34}= -0.36718476 \pm 4.3 \cdot 10^{-7} \) | \(a_{35}= +0.59505607 \pm 6.5 \cdot 10^{-8} \) | \(a_{36}= +0.65997401 \pm 5.3 \cdot 10^{-7} \) |
\(a_{37}= +0.46938276 \pm 7.6 \cdot 10^{-7} \) | \(a_{38}= -0.08911218 \pm 3.1 \cdot 10^{-7} \) | \(a_{39}= -0.80832199 \pm 2.3 \cdot 10^{-7} \) |
\(a_{40}= +0.19038462 \pm 2.3 \cdot 10^{-7} \) | \(a_{41}= +0.12753792 \pm 7.7 \cdot 10^{-7} \) | \(a_{42}= -1.19015948 \pm 5.7 \cdot 10^{-7} \) |
\(a_{43}= +0.46916818 \pm 1.7 \cdot 10^{-7} \) | \(a_{44}= +0.53266795 \pm 7.5 \cdot 10^{-7} \) | \(a_{45}= +0.71077753 \pm 1.3 \cdot 10^{-7} \) |
\(a_{46}= +0.92105541 \pm 3.2 \cdot 10^{-7} \) | \(a_{47}= -1.68853154 \pm 5.5 \cdot 10^{-7} \) | \(a_{48}= -0.38078439 \pm 3.1 \cdot 10^{-7} \) |
\(a_{49}= +0.22113045 \pm 5.5 \cdot 10^{-7} \) | \(a_{50}= -0.50206672 \pm 5.9 \cdot 10^{-7} \) | \(a_{51}= +0.79093132 \pm 3.1 \cdot 10^{-7} \) |
\(a_{52}= +0.26534767 \pm 5.9 \cdot 10^{-7} \) | \(a_{53}= -0.32758291 \pm 6.3 \cdot 10^{-7} \) | \(a_{54}= -0.34459070 \pm 4.8 \cdot 10^{-7} \) |
\(a_{55}= +0.57367170 \pm 1.8 \cdot 10^{-7} \) | \(a_{56}= +0.39069337 \pm 2.6 \cdot 10^{-7} \) | \(a_{57}= +0.19195137 \pm 2.6 \cdot 10^{-7} \) |
\(a_{58}= -0.02429555 \pm 5.3 \cdot 10^{-7} \) | \(a_{59}= -1.15361851 \pm 5.2 \cdot 10^{-7} \) | \(a_{60}= -0.41009643 \pm 5.4 \cdot 10^{-7} \) |
\(a_{61}= -0.84847059 \pm 2.7 \cdot 10^{-7} \) | \(a_{62}= +0.92842948 \pm 6.2 \cdot 10^{-7} \) | \(a_{63}= +1.45860554 \pm 2.1 \cdot 10^{-7} \) |
\(a_{64}= +0.125 \) | \(a_{65}= +0.28577362 \pm 1.4 \cdot 10^{-7} \) | \(a_{66}= -1.14738903 \pm 1.0 \cdot 10^{-6} \) |
\(a_{67}= +0.77694454 \pm 1.0 \cdot 10^{-6} \) | \(a_{68}= -0.25963883 \pm 4.3 \cdot 10^{-7} \) | \(a_{69}= -1.98399184 \pm 2.2 \cdot 10^{-7} \) |
\(a_{70}= +0.42076818 \pm 4.9 \cdot 10^{-7} \) | \(a_{71}= +1.16058010 \pm 4.4 \cdot 10^{-7} \) | \(a_{72}= +0.46667210 \pm 5.3 \cdot 10^{-7} \) |
\(a_{73}= -1.48053085 \pm 9.5 \cdot 10^{-7} \) | \(a_{74}= +0.33190373 \pm 7.7 \cdot 10^{-7} \) | \(a_{75}= +1.08147269 \pm 2.4 \cdot 10^{-7} \) |
\(a_{76}= -0.06301183 \pm 3.1 \cdot 10^{-7} \) | \(a_{77}= +1.17724701 \pm 3.0 \cdot 10^{-7} \) | \(a_{78}= -0.57156996 \pm 9.0 \cdot 10^{-7} \) |
\(a_{79}= -1.60324325 \pm 3.1 \cdot 10^{-7} \) | \(a_{80}= +0.13462226 \pm 2.3 \cdot 10^{-7} \) | \(a_{81}= -0.57768525 \pm 4.0 \cdot 10^{-7} \) |
\(a_{82}= +0.09018293 \pm 7.8 \cdot 10^{-7} \) | \(a_{83}= +1.60249672 \pm 3.3 \cdot 10^{-7} \) | \(a_{84}= -0.84156984 \pm 5.7 \cdot 10^{-7} \) |
\(a_{85}= -0.27962533 \pm 2.8 \cdot 10^{-7} \) | \(a_{86}= +0.33175200 \pm 1.8 \cdot 10^{-7} \) | \(a_{87}= +0.05233363 \pm 2.2 \cdot 10^{-7} \) |
\(a_{88}= +0.37665312 \pm 7.5 \cdot 10^{-7} \) | \(a_{89}= -0.25623039 \pm 3.1 \cdot 10^{-7} \) | \(a_{90}= +0.50259561 \pm 7.6 \cdot 10^{-7} \) |
\(a_{91}= +0.58644366 \pm 2.3 \cdot 10^{-7} \) | \(a_{92}= +0.65128453 \pm 3.2 \cdot 10^{-7} \) | \(a_{93}= -1.99987590 \pm 2.5 \cdot 10^{-7} \) |
\(a_{94}= -1.19397210 \pm 5.6 \cdot 10^{-7} \) | \(a_{95}= -0.06786236 \pm 2.3 \cdot 10^{-7} \) | \(a_{96}= -0.26925522 \pm 3.1 \cdot 10^{-7} \) |
\(a_{97}= +1.19633481 \pm 1.5 \cdot 10^{-7} \) | \(a_{98}= +0.15636284 \pm 5.6 \cdot 10^{-7} \) | \(a_{99}= +1.40618801 \pm 6.3 \cdot 10^{-7} \) |
\(a_{100}= -0.35501478 \pm 5.9 \cdot 10^{-7} \) | \(a_{101}= +0.40371599 \pm 2.9 \cdot 10^{-7} \) | \(a_{102}= +0.55927290 \pm 7.4 \cdot 10^{-7} \) |
\(a_{103}= -1.60353719 \pm 1.0 \cdot 10^{-6} \) | \(a_{104}= +0.18762913 \pm 5.9 \cdot 10^{-7} \) | \(a_{105}= -0.90635225 \pm 3.1 \cdot 10^{-8} \) |
\(a_{106}= -0.23163609 \pm 6.4 \cdot 10^{-7} \) | \(a_{107}= +0.89372893 \pm 3.7 \cdot 10^{-7} \) | \(a_{108}= -0.24366242 \pm 4.8 \cdot 10^{-7} \) |
\(a_{109}= -0.17243691 \pm 7.8 \cdot 10^{-7} \) | \(a_{110}= +0.40564715 \pm 9.7 \cdot 10^{-7} \) | \(a_{111}= -0.71493451 \pm 3.1 \cdot 10^{-7} \) |
\(a_{112}= +0.27626193 \pm 2.6 \cdot 10^{-7} \) | \(a_{113}= +0.37382642 \pm 4.8 \cdot 10^{-7} \) | \(a_{114}= +0.13573011 \pm 6.2 \cdot 10^{-7} \) |
\(a_{115}= +0.70141915 \pm 1.4 \cdot 10^{-7} \) | \(a_{116}= -0.01717955 \pm 5.3 \cdot 10^{-7} \) | \(a_{117}= +0.70049025 \pm 5.0 \cdot 10^{-7} \) |
\(a_{118}= -0.81573147 \pm 5.3 \cdot 10^{-7} \) | \(a_{119}= -0.57382660 \pm 1.1 \cdot 10^{-7} \) | \(a_{120}= -0.28998197 \pm 5.4 \cdot 10^{-7} \) |
\(a_{121}= +0.13494059 \pm 3.3 \cdot 10^{-7} \) | \(a_{122}= -0.59995931 \pm 2.8 \cdot 10^{-7} \) | \(a_{123}= -0.19425780 \pm 3.5 \cdot 10^{-7} \) |
\(a_{124}= +0.65649878 \pm 6.2 \cdot 10^{-7} \) | \(a_{125}= -0.92083216 \pm 3.6 \cdot 10^{-7} \) | \(a_{126}= +1.03138987 \pm 7.9 \cdot 10^{-7} \) |
\(a_{127}= +0.31354568 \pm 7.7 \cdot 10^{-7} \) | \(a_{128}= +0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -0.71460768 \pm 1.4 \cdot 10^{-7} \) |
\(a_{130}= +0.20207246 \pm 8.2 \cdot 10^{-7} \) | \(a_{131}= +1.79289871 \pm 5.0 \cdot 10^{-7} \) | \(a_{132}= -0.81132656 \pm 1.0 \cdot 10^{-6} \) |
\(a_{133}= -0.13926215 \pm 7.3 \cdot 10^{-8} \) | \(a_{134}= +0.54938275 \pm 1.0 \cdot 10^{-6} \) | \(a_{135}= -0.26241908 \pm 2.0 \cdot 10^{-7} \) |
\(a_{136}= -0.18359238 \pm 4.3 \cdot 10^{-7} \) | \(a_{137}= -0.70363595 \pm 2.7 \cdot 10^{-7} \) | \(a_{138}= -1.40289408 \pm 6.2 \cdot 10^{-7} \) |
\(a_{139}= -1.73286022 \pm 9.5 \cdot 10^{-7} \) | \(a_{140}= +0.29752804 \pm 4.9 \cdot 10^{-7} \) | \(a_{141}= +2.57186580 \pm 2.4 \cdot 10^{-7} \) |
\(a_{142}= +0.82065406 \pm 4.5 \cdot 10^{-7} \) | \(a_{143}= +0.56536879 \pm 7.0 \cdot 10^{-7} \) | \(a_{144}= +0.32998700 \pm 5.3 \cdot 10^{-7} \) |
\(a_{145}= -0.01850200 \pm 1.6 \cdot 10^{-7} \) | \(a_{146}= -1.04689340 \pm 9.6 \cdot 10^{-7} \) | \(a_{147}= -0.33681209 \pm 2.6 \cdot 10^{-7} \) |
\(a_{148}= +0.23469138 \pm 7.7 \cdot 10^{-7} \) | \(a_{149}= -0.29669404 \pm 7.8 \cdot 10^{-8} \) | \(a_{150}= +0.76471667 \pm 9.0 \cdot 10^{-7} \) |
\(a_{151}= -0.94901077 \pm 7.4 \cdot 10^{-7} \) | \(a_{152}= -0.04455609 \pm 3.1 \cdot 10^{-7} \) | \(a_{153}= -0.68541953 \pm 2.5 \cdot 10^{-7} \) |
\(a_{154}= +0.83243934 \pm 1.0 \cdot 10^{-6} \) | \(a_{155}= +0.70703479 \pm 1.5 \cdot 10^{-7} \) | \(a_{156}= -0.40416100 \pm 9.0 \cdot 10^{-7} \) |
\(a_{157}= -0.68335545 \pm 6.0 \cdot 10^{-7} \) | \(a_{158}= -1.13366418 \pm 3.2 \cdot 10^{-7} \) | \(a_{159}= +0.49895383 \pm 2.5 \cdot 10^{-7} \) |
\(a_{160}= +0.09519231 \pm 2.3 \cdot 10^{-7} \) | \(a_{161}= +1.43940095 \pm 1.5 \cdot 10^{-7} \) | \(a_{162}= -0.40848516 \pm 4.1 \cdot 10^{-7} \) |
\(a_{163}= +1.24972345 \pm 6.8 \cdot 10^{-7} \) | \(a_{164}= +0.06376896 \pm 7.8 \cdot 10^{-7} \) | \(a_{165}= -0.87378091 \pm 7.4 \cdot 10^{-8} \) |
\(a_{166}= +1.13313630 \pm 3.4 \cdot 10^{-7} \) | \(a_{167}= -0.59054262 \pm 7.0 \cdot 10^{-7} \) | \(a_{168}= -0.59507974 \pm 5.7 \cdot 10^{-7} \) |
\(a_{169}= -0.71836247 \pm 1.9 \cdot 10^{-7} \) | \(a_{170}= -0.19772497 \pm 6.6 \cdot 10^{-7} \) | \(a_{171}= -0.16634468 \pm 1.2 \cdot 10^{-7} \) |
\(a_{172}= +0.23458409 \pm 1.8 \cdot 10^{-7} \) | \(a_{173}= -0.31891095 \pm 9.7 \cdot 10^{-7} \) | \(a_{174}= +0.03700546 \pm 8.4 \cdot 10^{-7} \) |
\(a_{175}= -0.78461654 \pm 2.3 \cdot 10^{-7} \) | \(a_{176}= +0.26633398 \pm 7.5 \cdot 10^{-7} \) | \(a_{177}= +1.75711968 \pm 2.3 \cdot 10^{-7} \) |
\(a_{178}= -0.18118225 \pm 3.2 \cdot 10^{-7} \) | \(a_{179}= -0.13522433 \pm 1.2 \cdot 10^{-6} \) | \(a_{180}= +0.35538876 \pm 7.6 \cdot 10^{-7} \) |
\(a_{181}= -0.83962793 \pm 3.9 \cdot 10^{-7} \) | \(a_{182}= +0.41467829 \pm 8.5 \cdot 10^{-7} \) | \(a_{183}= +1.29233742 \pm 2.6 \cdot 10^{-7} \) |
\(a_{184}= +0.46052770 \pm 3.2 \cdot 10^{-7} \) | \(a_{185}= +0.25275747 \pm 2.1 \cdot 10^{-7} \) | \(a_{186}= -1.41412581 \pm 9.3 \cdot 10^{-7} \) |
\(a_{187}= -0.55320515 \pm 3.5 \cdot 10^{-7} \) | \(a_{188}= -0.84426577 \pm 5.6 \cdot 10^{-7} \) | \(a_{189}= -0.53851720 \pm 1.8 \cdot 10^{-7} \) |
\(a_{190}= -0.04798593 \pm 5.4 \cdot 10^{-7} \) | \(a_{191}= -0.20102657 \pm 3.6 \cdot 10^{-7} \) | \(a_{192}= -0.19039219 \pm 3.1 \cdot 10^{-7} \) |
\(a_{193}= +0.83768541 \pm 5.5 \cdot 10^{-7} \) | \(a_{194}= +0.84593645 \pm 1.6 \cdot 10^{-7} \) | \(a_{195}= -0.43527253 \pm 5.9 \cdot 10^{-8} \) |
\(a_{196}= +0.11056522 \pm 5.6 \cdot 10^{-7} \) | \(a_{197}= +1.16683308 \pm 8.3 \cdot 10^{-7} \) | \(a_{198}= +0.99432508 \pm 1.2 \cdot 10^{-6} \) |
\(a_{199}= -0.79771307 \pm 6.5 \cdot 10^{-7} \) | \(a_{200}= -0.25103336 \pm 5.9 \cdot 10^{-7} \) | \(a_{201}= -1.18339341 \pm 4.2 \cdot 10^{-7} \) |
\(a_{202}= +0.28547031 \pm 3.0 \cdot 10^{-7} \) | \(a_{203}= -0.03796844 \pm 2.0 \cdot 10^{-7} \) | \(a_{204}= +0.39546566 \pm 7.4 \cdot 10^{-7} \) |
\(a_{205}= +0.06867777 \pm 2.6 \cdot 10^{-7} \) | \(a_{206}= -1.13387202 \pm 1.0 \cdot 10^{-6} \) | \(a_{207}= +1.71932343 \pm 2.1 \cdot 10^{-7} \) |
\(a_{208}= +0.13267383 \pm 5.9 \cdot 10^{-7} \) | \(a_{209}= -0.13425753 \pm 1.7 \cdot 10^{-7} \) | \(a_{210}= -0.64088782 \pm 7.9 \cdot 10^{-7} \) |
\(a_{211}= -0.72623659 \pm 2.9 \cdot 10^{-7} \) | \(a_{212}= -0.16379145 \pm 6.4 \cdot 10^{-7} \) | \(a_{213}= -1.76772314 \pm 2.2 \cdot 10^{-7} \) |
\(a_{214}= +0.63196178 \pm 3.8 \cdot 10^{-7} \) | \(a_{215}= +0.25264192 \pm 8.0 \cdot 10^{-8} \) | \(a_{216}= -0.17229535 \pm 4.8 \cdot 10^{-7} \) |
\(a_{217}= +1.45092496 \pm 2.5 \cdot 10^{-7} \) | \(a_{218}= -0.12193131 \pm 7.9 \cdot 10^{-7} \) | \(a_{219}= +2.25505214 \pm 3.9 \cdot 10^{-7} \) |
\(a_{220}= +0.28683585 \pm 9.7 \cdot 10^{-7} \) | \(a_{221}= -0.27557823 \pm 2.7 \cdot 10^{-7} \) | \(a_{222}= -0.50553504 \pm 1.0 \cdot 10^{-6} \) |
\(a_{223}= -0.74359603 \pm 9.8 \cdot 10^{-7} \) | \(a_{224}= +0.19534668 \pm 2.6 \cdot 10^{-7} \) | \(a_{225}= -0.93720211 \pm 4.9 \cdot 10^{-7} \) |
\(a_{226}= +0.26433519 \pm 4.9 \cdot 10^{-7} \) | \(a_{227}= -0.65588097 \pm 6.0 \cdot 10^{-7} \) | \(a_{228}= +0.09597568 \pm 6.2 \cdot 10^{-7} \) |
\(a_{229}= +0.08305251 \pm 5.5 \cdot 10^{-7} \) | \(a_{230}= +0.49597824 \pm 5.4 \cdot 10^{-7} \) | \(a_{231}= -1.79310913 \pm 1.3 \cdot 10^{-7} \) |
\(a_{232}= -0.01214777 \pm 5.3 \cdot 10^{-7} \) | \(a_{233}= +0.85129327 \pm 4.9 \cdot 10^{-7} \) | \(a_{234}= +0.49532141 \pm 1.1 \cdot 10^{-6} \) |
\(a_{235}= -0.90925572 \pm 1.7 \cdot 10^{-7} \) | \(a_{236}= -0.57680926 \pm 5.3 \cdot 10^{-7} \) | \(a_{237}= +2.44196001 \pm 1.6 \cdot 10^{-7} \) |
\(a_{238}= -0.40575668 \pm 6.9 \cdot 10^{-7} \) | \(a_{239}= +0.76030191 \pm 6.3 \cdot 10^{-7} \) | \(a_{240}= -0.20504822 \pm 5.4 \cdot 10^{-7} \) |
\(a_{241}= -0.84243768 \pm 6.5 \cdot 10^{-7} \) | \(a_{242}= +0.09541741 \pm 3.4 \cdot 10^{-7} \) | \(a_{243}= +1.36721894 \pm 5.7 \cdot 10^{-7} \) |
\(a_{244}= -0.42423530 \pm 2.8 \cdot 10^{-7} \) | \(a_{245}= +0.11907632 \pm 2.0 \cdot 10^{-7} \) | \(a_{246}= -0.13736101 \pm 1.0 \cdot 10^{-6} \) |
\(a_{247}= -0.06688017 \pm 1.4 \cdot 10^{-7} \) | \(a_{248}= +0.46421474 \pm 6.2 \cdot 10^{-7} \) | \(a_{249}= -2.44082294 \pm 1.7 \cdot 10^{-7} \) |
\(a_{250}= -0.65112667 \pm 3.7 \cdot 10^{-7} \) | \(a_{251}= -0.85272039 \pm 9.0 \cdot 10^{-7} \) | \(a_{252}= +0.72930277 \pm 7.9 \cdot 10^{-7} \) |
\(a_{253}= +1.38767358 \pm 3.1 \cdot 10^{-7} \) | \(a_{254}= +0.22171028 \pm 7.8 \cdot 10^{-7} \) | \(a_{255}= +0.42590784 \pm 2.6 \cdot 10^{-7} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= -0.55732147 \pm 2.0 \cdot 10^{-7} \) | \(a_{258}= -0.50530393 \pm 4.9 \cdot 10^{-7} \) |
\(a_{259}= +0.51869034 \pm 3.0 \cdot 10^{-7} \) | \(a_{260}= +0.14288681 \pm 8.2 \cdot 10^{-7} \) | \(a_{261}= -0.04535222 \pm 4.3 \cdot 10^{-7} \) |
\(a_{262}= +1.26777083 \pm 5.1 \cdot 10^{-7} \) | \(a_{263}= -0.43599929 \pm 3.4 \cdot 10^{-7} \) | \(a_{264}= -0.57369451 \pm 1.0 \cdot 10^{-6} \) |
\(a_{265}= -0.17639980 \pm 1.8 \cdot 10^{-7} \) | \(a_{266}= -0.09847321 \pm 5.7 \cdot 10^{-7} \) | \(a_{267}= +0.39027413 \pm 2.5 \cdot 10^{-7} \) |
\(a_{268}= +0.38847227 \pm 1.0 \cdot 10^{-6} \) | \(a_{269}= +0.84201778 \pm 8.3 \cdot 10^{-7} \) | \(a_{270}= -0.18555831 \pm 7.1 \cdot 10^{-7} \) |
\(a_{271}= +0.05083278 \pm 6.2 \cdot 10^{-7} \) | \(a_{272}= -0.12981942 \pm 4.3 \cdot 10^{-7} \) | \(a_{273}= -0.89323437 \pm 1.0 \cdot 10^{-7} \) |
\(a_{274}= -0.49754575 \pm 2.8 \cdot 10^{-7} \) | \(a_{275}= -0.75641999 \pm 6.9 \cdot 10^{-7} \) | \(a_{276}= -0.99199592 \pm 6.2 \cdot 10^{-7} \) |
\(a_{277}= -0.17438906 \pm 4.9 \cdot 10^{-7} \) | \(a_{278}= -1.22531721 \pm 9.6 \cdot 10^{-7} \) | \(a_{279}= +1.73308853 \pm 5.2 \cdot 10^{-7} \) |
\(a_{280}= +0.21038409 \pm 4.9 \cdot 10^{-7} \) | \(a_{281}= +0.29891228 \pm 5.0 \cdot 10^{-7} \) | \(a_{282}= +1.81858375 \pm 8.7 \cdot 10^{-7} \) |
\(a_{283}= -0.14864084 \pm 5.7 \cdot 10^{-7} \) | \(a_{284}= +0.58029005 \pm 4.5 \cdot 10^{-7} \) | \(a_{285}= +0.10336371 \pm 2.1 \cdot 10^{-7} \) |
\(a_{286}= +0.39977611 \pm 1.3 \cdot 10^{-6} \) | \(a_{287}= +0.14093549 \pm 3.0 \cdot 10^{-7} \) | \(a_{288}= +0.23333605 \pm 5.3 \cdot 10^{-7} \) |
\(a_{289}= -0.73035070 \pm 5.9 \cdot 10^{-7} \) | \(a_{290}= -0.01308289 \pm 7.6 \cdot 10^{-7} \) | \(a_{291}= -1.82218247 \pm 1.1 \cdot 10^{-7} \) |
\(a_{292}= -0.74026542 \pm 9.6 \cdot 10^{-7} \) | \(a_{293}= +1.46805922 \pm 7.4 \cdot 10^{-7} \) | \(a_{294}= -0.23816211 \pm 8.6 \cdot 10^{-7} \) |
\(a_{295}= -0.62121092 \pm 1.6 \cdot 10^{-7} \) | \(a_{296}= +0.16595187 \pm 7.7 \cdot 10^{-7} \) | \(a_{297}= -0.51916465 \pm 5.2 \cdot 10^{-7} \) |
\(a_{298}= -0.20979437 \pm 8.9 \cdot 10^{-8} \) | \(a_{299}= +0.69126731 \pm 2.4 \cdot 10^{-7} \) | \(a_{300}= +0.54073635 \pm 9.0 \cdot 10^{-7} \) |
\(a_{301}= +0.51845323 \pm 9.8 \cdot 10^{-8} \) | \(a_{302}= -0.67105195 \pm 7.5 \cdot 10^{-7} \) | \(a_{303}= -0.61491498 \pm 2.7 \cdot 10^{-7} \) |
\(a_{304}= -0.03150591 \pm 3.1 \cdot 10^{-7} \) | \(a_{305}= -0.45689211 \pm 2.0 \cdot 10^{-7} \) | \(a_{306}= -0.48466480 \pm 9.6 \cdot 10^{-7} \) |
\(a_{307}= +0.60091243 \pm 4.1 \cdot 10^{-7} \) | \(a_{308}= +0.58862350 \pm 1.0 \cdot 10^{-6} \) | \(a_{309}= +2.44240771 \pm 3.9 \cdot 10^{-7} \) |
\(a_{310}= +0.49994909 \pm 8.4 \cdot 10^{-7} \) | \(a_{311}= -0.52576908 \pm 2.4 \cdot 10^{-7} \) | \(a_{312}= -0.28578498 \pm 9.0 \cdot 10^{-7} \) |
\(a_{313}= -0.81403175 \pm 3.4 \cdot 10^{-7} \) | \(a_{314}= -0.48320527 \pm 6.1 \cdot 10^{-7} \) | \(a_{315}= +0.78544308 \pm 5.4 \cdot 10^{-8} \) |
\(a_{316}= -0.80162163 \pm 3.2 \cdot 10^{-7} \) | \(a_{317}= -0.70077285 \pm 1.6 \cdot 10^{-7} \) | \(a_{318}= +0.35281363 \pm 9.5 \cdot 10^{-7} \) |
\(a_{319}= -0.03660398 \pm 6.1 \cdot 10^{-7} \) | \(a_{320}= +0.06731113 \pm 2.3 \cdot 10^{-7} \) | \(a_{321}= -1.36127209 \pm 1.7 \cdot 10^{-7} \) |
\(a_{322}= +1.01781017 \pm 5.7 \cdot 10^{-7} \) | \(a_{323}= +0.06544127 \pm 4.5 \cdot 10^{-7} \) | \(a_{324}= -0.28884263 \pm 4.1 \cdot 10^{-7} \) |
\(a_{325}= -0.37680937 \pm 5.4 \cdot 10^{-7} \) | \(a_{326}= +0.88368793 \pm 6.9 \cdot 10^{-7} \) | \(a_{327}= +0.26264513 \pm 4.0 \cdot 10^{-7} \) |
\(a_{328}= +0.04509146 \pm 7.8 \cdot 10^{-7} \) | \(a_{329}= -1.86590792 \pm 2.1 \cdot 10^{-7} \) | \(a_{330}= -0.61785641 \pm 1.2 \cdot 10^{-6} \) |
\(a_{331}= +1.45013298 \pm 6.2 \cdot 10^{-7} \) | \(a_{332}= +0.80124836 \pm 3.4 \cdot 10^{-7} \) | \(a_{333}= +0.61956084 \pm 6.4 \cdot 10^{-7} \) |
\(a_{334}= -0.41757669 \pm 7.1 \cdot 10^{-7} \) | \(a_{335}= +0.41837612 \pm 3.0 \cdot 10^{-7} \) | \(a_{336}= -0.42078492 \pm 5.7 \cdot 10^{-7} \) |
\(a_{337}= +1.64237118 \pm 6.6 \cdot 10^{-7} \) | \(a_{338}= -0.50795897 \pm 2.0 \cdot 10^{-7} \) | \(a_{339}= -0.56938906 \pm 2.4 \cdot 10^{-7} \) |
\(a_{340}= -0.13981266 \pm 6.6 \cdot 10^{-7} \) | \(a_{341}= +1.39878345 \pm 7.3 \cdot 10^{-7} \) | \(a_{342}= -0.11762345 \pm 8.4 \cdot 10^{-7} \) |
\(a_{343}= -0.86068802 \pm 4.5 \cdot 10^{-7} \) | \(a_{344}= +0.16587600 \pm 1.8 \cdot 10^{-7} \) | \(a_{345}= -1.06835785 \pm 1.2 \cdot 10^{-7} \) |
\(a_{346}= -0.22550409 \pm 9.8 \cdot 10^{-7} \) | \(a_{347}= -1.22941197 \pm 5.4 \cdot 10^{-7} \) | \(a_{348}= +0.02616681 \pm 8.4 \cdot 10^{-7} \) |
\(a_{349}= -0.84008070 \pm 6.0 \cdot 10^{-7} \) | \(a_{350}= -0.55480768 \pm 8.4 \cdot 10^{-7} \) | \(a_{351}= -0.25862102 \pm 4.1 \cdot 10^{-7} \) |
\(a_{352}= +0.18832656 \pm 7.5 \cdot 10^{-7} \) | \(a_{353}= +1.49105083 \pm 1.0 \cdot 10^{-6} \) | \(a_{354}= +1.24247124 \pm 8.4 \cdot 10^{-7} \) |
\(a_{355}= +0.62495966 \pm 1.7 \cdot 10^{-7} \) | \(a_{356}= -0.12811520 \pm 3.2 \cdot 10^{-7} \) | \(a_{357}= +0.87401685 \pm 5.2 \cdot 10^{-8} \) |
\(a_{358}= -0.09561804 \pm 1.2 \cdot 10^{-6} \) | \(a_{359}= +0.52611065 \pm 2.1 \cdot 10^{-7} \) | \(a_{360}= +0.25129781 \pm 7.6 \cdot 10^{-7} \) |
\(a_{361}= -0.98411804 \pm 6.1 \cdot 10^{-7} \) | \(a_{362}= -0.59370661 \pm 4.0 \cdot 10^{-7} \) | \(a_{363}= -0.20553308 \pm 2.0 \cdot 10^{-7} \) |
\(a_{364}= +0.29322183 \pm 8.5 \cdot 10^{-7} \) | \(a_{365}= -0.79724962 \pm 2.8 \cdot 10^{-7} \) | \(a_{366}= +0.91382055 \pm 5.9 \cdot 10^{-7} \) |
\(a_{367}= -0.88317847 \pm 7.1 \cdot 10^{-7} \) | \(a_{368}= +0.32564226 \pm 3.2 \cdot 10^{-7} \) | \(a_{369}= +0.16834343 \pm 6.4 \cdot 10^{-7} \) |
\(a_{370}= +0.17872652 \pm 9.9 \cdot 10^{-7} \) | \(a_{371}= -0.36199474 \pm 2.4 \cdot 10^{-7} \) | \(a_{372}= -0.99993795 \pm 9.3 \cdot 10^{-7} \) |
\(a_{373}= +0.63226946 \pm 4.9 \cdot 10^{-7} \) | \(a_{374}= -0.39117511 \pm 1.1 \cdot 10^{-6} \) | \(a_{375}= +1.40255405 \pm 2.2 \cdot 10^{-7} \) |
\(a_{376}= -0.59698605 \pm 5.6 \cdot 10^{-7} \) | \(a_{377}= -0.01823421 \pm 4.8 \cdot 10^{-7} \) | \(a_{378}= -0.38078916 \pm 7.4 \cdot 10^{-7} \) |
\(a_{379}= -1.01243121 \pm 2.7 \cdot 10^{-7} \) | \(a_{380}= -0.03393118 \pm 5.4 \cdot 10^{-7} \) | \(a_{381}= -0.47757321 \pm 4.0 \cdot 10^{-7} \) |
\(a_{382}= -0.14214725 \pm 3.7 \cdot 10^{-7} \) | \(a_{383}= +1.01566115 \pm 3.5 \cdot 10^{-7} \) | \(a_{384}= -0.13462761 \pm 3.1 \cdot 10^{-7} \) |
\(a_{385}= +0.63393460 \pm 7.5 \cdot 10^{-8} \) | \(a_{386}= +0.59233304 \pm 5.6 \cdot 10^{-7} \) | \(a_{387}= +0.61927761 \pm 1.1 \cdot 10^{-7} \) |
\(a_{388}= +0.59816740 \pm 1.6 \cdot 10^{-7} \) | \(a_{389}= +1.48612114 \pm 1.0 \cdot 10^{-6} \) | \(a_{390}= -0.30778416 \pm 1.1 \cdot 10^{-6} \) |
\(a_{391}= -0.67639502 \pm 2.6 \cdot 10^{-7} \) | \(a_{392}= +0.07818142 \pm 5.6 \cdot 10^{-7} \) | \(a_{393}= -2.73083135 \pm 2.4 \cdot 10^{-7} \) |
\(a_{394}= +0.82507558 \pm 8.4 \cdot 10^{-7} \) | \(a_{395}= -0.86332891 \pm 1.1 \cdot 10^{-7} \) | \(a_{396}= +0.70309401 \pm 1.2 \cdot 10^{-6} \) |
\(a_{397}= +1.07853856 \pm 4.6 \cdot 10^{-7} \) | \(a_{398}= -0.56406832 \pm 6.6 \cdot 10^{-7} \) | \(a_{399}= +0.21211542 \pm 5.8 \cdot 10^{-8} \) |
\(a_{400}= -0.17750739 \pm 5.9 \cdot 10^{-7} \) | \(a_{401}= -1.29812942 \pm 3.2 \cdot 10^{-7} \) | \(a_{402}= -0.83678551 \pm 1.3 \cdot 10^{-6} \) |
\(a_{403}= +0.69680168 \pm 5.7 \cdot 10^{-7} \) | \(a_{404}= +0.20185799 \pm 3.0 \cdot 10^{-7} \) | \(a_{405}= -0.31107717 \pm 1.7 \cdot 10^{-7} \) |
\(a_{406}= -0.02684774 \pm 7.9 \cdot 10^{-7} \) | \(a_{407}= +0.50005031 \pm 9.0 \cdot 10^{-7} \) | \(a_{408}= +0.27963645 \pm 7.4 \cdot 10^{-7} \) |
\(a_{409}= -0.66036540 \pm 2.5 \cdot 10^{-7} \) | \(a_{410}= +0.04856252 \pm 1.0 \cdot 10^{-6} \) | \(a_{411}= +1.07173435 \pm 2.0 \cdot 10^{-7} \) |
\(a_{412}= -0.80176859 \pm 1.0 \cdot 10^{-6} \) | \(a_{413}= -1.27480350 \pm 2.0 \cdot 10^{-7} \) | \(a_{414}= +1.21574526 \pm 8.5 \cdot 10^{-7} \) |
\(a_{415}= +0.86292691 \pm 1.3 \cdot 10^{-7} \) | \(a_{416}= +0.09381457 \pm 5.9 \cdot 10^{-7} \) | \(a_{417}= +2.63938448 \pm 3.8 \cdot 10^{-7} \) |
\(a_{418}= -0.09493441 \pm 1.0 \cdot 10^{-6} \) | \(a_{419}= -0.46570938 \pm 9.6 \cdot 10^{-7} \) | \(a_{420}= -0.45317613 \pm 7.9 \cdot 10^{-7} \) |
\(a_{421}= +1.14530211 \pm 1.9 \cdot 10^{-7} \) | \(a_{422}= -0.51352681 \pm 3.0 \cdot 10^{-7} \) | \(a_{423}= -2.22877385 \pm 4.6 \cdot 10^{-7} \) |
\(a_{424}= -0.11581805 \pm 6.4 \cdot 10^{-7} \) | \(a_{425}= +0.36870250 \pm 2.8 \cdot 10^{-7} \) | \(a_{426}= -1.24996902 \pm 7.6 \cdot 10^{-7} \) |
\(a_{427}= -0.93760049 \pm 1.2 \cdot 10^{-7} \) | \(a_{428}= +0.44686446 \pm 3.8 \cdot 10^{-7} \) | \(a_{429}= -0.86113444 \pm 2.7 \cdot 10^{-7} \) |
\(a_{430}= +0.17864481 \pm 4.1 \cdot 10^{-7} \) | \(a_{431}= +0.30682414 \pm 9.4 \cdot 10^{-7} \) | \(a_{432}= -0.12183121 \pm 4.8 \cdot 10^{-7} \) |
\(a_{433}= +0.64779542 \pm 4.2 \cdot 10^{-7} \) | \(a_{434}= +1.02595888 \pm 8.7 \cdot 10^{-7} \) | \(a_{435}= +0.02818109 \pm 1.0 \cdot 10^{-7} \) |
\(a_{436}= -0.08621845 \pm 7.9 \cdot 10^{-7} \) | \(a_{437}= -0.16415452 \pm 2.2 \cdot 10^{-7} \) | \(a_{438}= +1.59456266 \pm 1.2 \cdot 10^{-6} \) |
\(a_{439}= -1.67546728 \pm 1.7 \cdot 10^{-7} \) | \(a_{440}= +0.20282357 \pm 9.7 \cdot 10^{-7} \) | \(a_{441}= +0.29188070 \pm 4.4 \cdot 10^{-7} \) |
\(a_{442}= -0.19486324 \pm 1.0 \cdot 10^{-6} \) | \(a_{443}= +1.28441187 \pm 5.6 \cdot 10^{-7} \) | \(a_{444}= -0.35746725 \pm 1.0 \cdot 10^{-6} \) |
\(a_{445}= -0.13797726 \pm 2.1 \cdot 10^{-7} \) | \(a_{446}= -0.52580179 \pm 9.9 \cdot 10^{-7} \) | \(a_{447}= +0.45190583 \pm 3.3 \cdot 10^{-8} \) |
\(a_{448}= +0.13813096 \pm 2.6 \cdot 10^{-7} \) | \(a_{449}= -0.54704332 \pm 8.9 \cdot 10^{-7} \) | \(a_{450}= -0.66270197 \pm 1.1 \cdot 10^{-6} \) |
\(a_{451}= +0.13587073 \pm 9.0 \cdot 10^{-7} \) | \(a_{452}= +0.18691321 \pm 4.9 \cdot 10^{-7} \) | \(a_{453}= +1.44547394 \pm 3.1 \cdot 10^{-7} \) |
\(a_{454}= -0.46377788 \pm 6.1 \cdot 10^{-7} \) | \(a_{455}= +0.31579348 \pm 6.0 \cdot 10^{-8} \) | \(a_{456}= +0.06786506 \pm 6.2 \cdot 10^{-7} \) |
\(a_{457}= -0.84473800 \pm 4.9 \cdot 10^{-7} \) | \(a_{458}= +0.05872699 \pm 5.6 \cdot 10^{-7} \) | \(a_{459}= +0.25305691 \pm 3.8 \cdot 10^{-7} \) |
\(a_{460}= +0.35070957 \pm 5.4 \cdot 10^{-7} \) | \(a_{461}= -1.35083573 \pm 3.8 \cdot 10^{-7} \) | \(a_{462}= -1.26791962 \pm 1.3 \cdot 10^{-6} \) |
\(a_{463}= -0.71141471 \pm 5.6 \cdot 10^{-7} \) | \(a_{464}= -0.00858977 \pm 5.3 \cdot 10^{-7} \) | \(a_{465}= -1.07691124 \pm 6.3 \cdot 10^{-8} \) |
\(a_{466}= +0.60195524 \pm 5.0 \cdot 10^{-7} \) | \(a_{467}= +1.46070903 \pm 4.3 \cdot 10^{-7} \) | \(a_{468}= +0.35024512 \pm 1.1 \cdot 10^{-6} \) |
\(a_{469}= +0.85856079 \pm 3.9 \cdot 10^{-7} \) | \(a_{470}= -0.64294088 \pm 7.9 \cdot 10^{-7} \) | \(a_{471}= +1.04084435 \pm 3.0 \cdot 10^{-7} \) |
\(a_{472}= -0.40786574 \pm 5.3 \cdot 10^{-7} \) | \(a_{473}= +0.49982171 \pm 1.7 \cdot 10^{-7} \) | \(a_{474}= +1.72672648 \pm 6.2 \cdot 10^{-7} \) |
\(a_{475}= +0.08948052 \pm 1.5 \cdot 10^{-7} \) | \(a_{476}= -0.28691330 \pm 6.9 \cdot 10^{-7} \) | \(a_{477}= -0.43239241 \pm 5.3 \cdot 10^{-7} \) |
\(a_{478}= +0.53761463 \pm 6.4 \cdot 10^{-7} \) | \(a_{479}= -0.79738547 \pm 3.6 \cdot 10^{-7} \) | \(a_{480}= -0.14499098 \pm 5.4 \cdot 10^{-7} \) |
\(a_{481}= +0.24909924 \pm 7.1 \cdot 10^{-7} \) | \(a_{482}= -0.59569340 \pm 6.6 \cdot 10^{-7} \) | \(a_{483}= -2.19240565 \pm 1.5 \cdot 10^{-7} \) |
\(a_{484}= +0.06747030 \pm 3.4 \cdot 10^{-7} \) | \(a_{485}= +0.64421317 \pm 9.7 \cdot 10^{-8} \) | \(a_{486}= +0.96676979 \pm 5.8 \cdot 10^{-7} \) |
\(a_{487}= +1.55497251 \pm 6.0 \cdot 10^{-7} \) | \(a_{488}= -0.29997965 \pm 2.8 \cdot 10^{-7} \) | \(a_{489}= -1.90350072 \pm 3.6 \cdot 10^{-7} \) |
\(a_{490}= +0.08419967 \pm 7.8 \cdot 10^{-7} \) | \(a_{491}= -1.51317000 \pm 3.8 \cdot 10^{-7} \) | \(a_{492}= -0.09712890 \pm 1.0 \cdot 10^{-6} \) |
\(a_{493}= +0.01784191 \pm 3.0 \cdot 10^{-7} \) | \(a_{494}= -0.04729142 \pm 9.0 \cdot 10^{-7} \) | \(a_{495}= +0.75721682 \pm 1.6 \cdot 10^{-7} \) |
\(a_{496}= +0.32824939 \pm 6.2 \cdot 10^{-7} \) | \(a_{497}= +1.28249639 \pm 1.6 \cdot 10^{-7} \) | \(a_{498}= -1.72592245 \pm 6.5 \cdot 10^{-7} \) |
\(a_{499}= +0.80748736 \pm 8.5 \cdot 10^{-7} \) | \(a_{500}= -0.46041608 \pm 3.7 \cdot 10^{-7} \) | \(a_{501}= +0.89947765 \pm 2.8 \cdot 10^{-7} \) |
\(a_{502}= -0.60296437 \pm 9.1 \cdot 10^{-7} \) | \(a_{503}= +0.33277633 \pm 1.1 \cdot 10^{-6} \) | \(a_{504}= +0.51569493 \pm 7.9 \cdot 10^{-7} \) |
\(a_{505}= +0.21739663 \pm 2.4 \cdot 10^{-7} \) | \(a_{506}= +0.98123340 \pm 1.0 \cdot 10^{-6} \) | \(a_{507}= +1.09416485 \pm 1.8 \cdot 10^{-7} \) |
\(a_{508}= +0.15677284 \pm 7.8 \cdot 10^{-7} \) | \(a_{509}= -0.28601458 \pm 6.9 \cdot 10^{-7} \) | \(a_{510}= +0.30116232 \pm 9.7 \cdot 10^{-7} \) |
\(a_{511}= -1.63605723 \pm 3.7 \cdot 10^{-7} \) | \(a_{512}= +0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +0.06141446 \pm 2.9 \cdot 10^{-7} \) |
\(a_{514}= -0.39408579 \pm 2.1 \cdot 10^{-7} \) | \(a_{515}= -0.86348719 \pm 2.6 \cdot 10^{-7} \) | \(a_{516}= -0.35730384 \pm 4.9 \cdot 10^{-7} \) |
\(a_{517}= -1.79885328 \pm 6.4 \cdot 10^{-7} \) | \(a_{518}= +0.36676946 \pm 1.0 \cdot 10^{-6} \) | \(a_{519}= +0.48574524 \pm 3.8 \cdot 10^{-7} \) |
\(a_{520}= +0.10103623 \pm 8.2 \cdot 10^{-7} \) | \(a_{521}= +0.69559593 \pm 7.7 \cdot 10^{-7} \) | \(a_{522}= -0.03206886 \pm 1.0 \cdot 10^{-6} \) |
\(a_{523}= -0.37351764 \pm 8.4 \cdot 10^{-7} \) | \(a_{524}= +0.89644935 \pm 5.1 \cdot 10^{-7} \) | \(a_{525}= +1.19507893 \pm 1.2 \cdot 10^{-7} \) |
\(a_{526}= -0.30829805 \pm 3.5 \cdot 10^{-7} \) | \(a_{527}= -0.68181032 \pm 2.8 \cdot 10^{-7} \) | \(a_{528}= -0.40566328 \pm 1.0 \cdot 10^{-6} \) |
\(a_{529}= +0.69668613 \pm 5.4 \cdot 10^{-7} \) | \(a_{530}= -0.12473350 \pm 8.6 \cdot 10^{-7} \) | \(a_{531}= -1.52271646 \pm 4.3 \cdot 10^{-7} \) |
\(a_{532}= -0.06963108 \pm 5.7 \cdot 10^{-7} \) | \(a_{533}= +0.06768378 \pm 7.1 \cdot 10^{-7} \) | \(a_{534}= +0.27596549 \pm 6.3 \cdot 10^{-7} \) |
\(a_{535}= +0.48126323 \pm 9.9 \cdot 10^{-8} \) | \(a_{536}= +0.27469138 \pm 1.0 \cdot 10^{-6} \) | \(a_{537}= +0.20596525 \pm 4.7 \cdot 10^{-7} \) |
\(a_{538}= +0.59539648 \pm 8.4 \cdot 10^{-7} \) | \(a_{539}= +0.23557821 \pm 6.2 \cdot 10^{-7} \) | \(a_{540}= -0.13120954 \pm 7.1 \cdot 10^{-7} \) |
\(a_{541}= -0.11816388 \pm 6.0 \cdot 10^{-7} \) | \(a_{542}= +0.03594420 \pm 6.3 \cdot 10^{-7} \) | \(a_{543}= +1.27886884 \pm 2.7 \cdot 10^{-7} \) |
\(a_{544}= -0.09179619 \pm 4.3 \cdot 10^{-7} \) | \(a_{545}= -0.09285538 \pm 2.9 \cdot 10^{-7} \) | \(a_{546}= -0.63161208 \pm 1.1 \cdot 10^{-6} \) |
\(a_{547}= +1.83053430 \pm 1.0 \cdot 10^{-6} \) | \(a_{548}= -0.35181798 \pm 2.8 \cdot 10^{-7} \) | \(a_{549}= -1.11993707 \pm 9.4 \cdot 10^{-8} \) |
\(a_{550}= -0.53486970 \pm 1.3 \cdot 10^{-6} \) | \(a_{551}= +0.00433006 \pm 1.9 \cdot 10^{-7} \) | \(a_{552}= -0.70144704 \pm 6.2 \cdot 10^{-7} \) |
\(a_{553}= -1.77166029 \pm 1.2 \cdot 10^{-7} \) | \(a_{554}= -0.12331169 \pm 5.1 \cdot 10^{-7} \) | \(a_{555}= -0.38498439 \pm 1.2 \cdot 10^{-7} \) |
\(a_{556}= -0.86643011 \pm 9.6 \cdot 10^{-7} \) | \(a_{557}= -0.35855865 \pm 2.8 \cdot 10^{-7} \) | \(a_{558}= +1.22547865 \pm 1.1 \cdot 10^{-6} \) |
\(a_{559}= +0.24898536 \pm 1.3 \cdot 10^{-7} \) | \(a_{560}= +0.14876402 \pm 4.9 \cdot 10^{-7} \) | \(a_{561}= +0.84260753 \pm 1.3 \cdot 10^{-7} \) |
\(a_{562}= +0.21136290 \pm 5.1 \cdot 10^{-7} \) | \(a_{563}= +0.08646100 \pm 1.1 \cdot 10^{-6} \) | \(a_{564}= +1.28593290 \pm 8.7 \cdot 10^{-7} \) |
\(a_{565}= +0.20130143 \pm 1.2 \cdot 10^{-7} \) | \(a_{566}= -0.10510495 \pm 5.8 \cdot 10^{-7} \) | \(a_{567}= -0.63836977 \pm 1.7 \cdot 10^{-7} \) |
\(a_{568}= +0.41032703 \pm 4.5 \cdot 10^{-7} \) | \(a_{569}= -0.74686770 \pm 2.1 \cdot 10^{-7} \) | \(a_{570}= +0.07308918 \pm 8.4 \cdot 10^{-7} \) |
\(a_{571}= +1.90279448 \pm 2.8 \cdot 10^{-7} \) | \(a_{572}= +0.28268440 \pm 1.3 \cdot 10^{-6} \) | \(a_{573}= +0.30619113 \pm 1.6 \cdot 10^{-7} \) |
\(a_{574}= +0.09965644 \pm 1.0 \cdot 10^{-6} \) | \(a_{575}= -0.92486253 \pm 2.6 \cdot 10^{-7} \) | \(a_{576}= +0.16499350 \pm 5.3 \cdot 10^{-7} \) |
\(a_{577}= -0.82598771 \pm 3.4 \cdot 10^{-7} \) | \(a_{578}= -0.51643593 \pm 6.0 \cdot 10^{-7} \) | \(a_{579}= -1.27591011 \pm 3.1 \cdot 10^{-7} \) |
\(a_{580}= -0.00925100 \pm 7.6 \cdot 10^{-7} \) | \(a_{581}= +1.77083533 \pm 1.3 \cdot 10^{-7} \) | \(a_{582}= -1.28847758 \pm 4.7 \cdot 10^{-7} \) |
\(a_{583}= -0.34898583 \pm 7.4 \cdot 10^{-7} \) | \(a_{584}= -0.52344670 \pm 9.6 \cdot 10^{-7} \) | \(a_{585}= +0.37720632 \pm 1.2 \cdot 10^{-7} \) |
\(a_{586}= +1.03807463 \pm 7.5 \cdot 10^{-7} \) | \(a_{587}= +0.73308749 \pm 1.4 \cdot 10^{-7} \) | \(a_{588}= -0.16840605 \pm 8.6 \cdot 10^{-7} \) |
\(a_{589}= -0.16546876 \pm 1.4 \cdot 10^{-7} \) | \(a_{590}= -0.43926245 \pm 7.5 \cdot 10^{-7} \) | \(a_{591}= -1.77724728 \pm 3.3 \cdot 10^{-7} \) |
\(a_{592}= +0.11734569 \pm 7.7 \cdot 10^{-7} \) | \(a_{593}= +0.15960180 \pm 3.9 \cdot 10^{-7} \) | \(a_{594}= -0.36710484 \pm 1.2 \cdot 10^{-6} \) |
\(a_{595}= -0.30899933 \pm 3.4 \cdot 10^{-8} \) | \(a_{596}= -0.14834702 \pm 8.9 \cdot 10^{-8} \) | \(a_{597}= +1.21502674 \pm 4.0 \cdot 10^{-7} \) |
\(a_{598}= +0.48879981 \pm 9.0 \cdot 10^{-7} \) | \(a_{599}= +0.23319212 \pm 6.8 \cdot 10^{-7} \) | \(a_{600}= +0.38235834 \pm 9.0 \cdot 10^{-7} \) |
\(a_{601}= +0.31068811 \pm 3.1 \cdot 10^{-7} \) | \(a_{602}= +0.36660179 \pm 4.4 \cdot 10^{-7} \) | \(a_{603}= +1.02552641 \pm 8.4 \cdot 10^{-7} \) |
\(a_{604}= -0.47450538 \pm 7.5 \cdot 10^{-7} \) | \(a_{605}= +0.07266403 \pm 1.7 \cdot 10^{-7} \) | \(a_{606}= -0.43481055 \pm 6.1 \cdot 10^{-7} \) |
\(a_{607}= +1.06373957 \pm 1.2 \cdot 10^{-7} \) | \(a_{608}= -0.02227805 \pm 3.1 \cdot 10^{-7} \) | \(a_{609}= +0.05783116 \pm 9.3 \cdot 10^{-8} \) |
\(a_{610}= -0.32307151 \pm 5.1 \cdot 10^{-7} \) | \(a_{611}= -0.89609581 \pm 5.1 \cdot 10^{-7} \) | \(a_{612}= -0.34270976 \pm 9.6 \cdot 10^{-7} \) |
\(a_{613}= -1.88924796 \pm 3.1 \cdot 10^{-7} \) | \(a_{614}= +0.42490925 \pm 4.2 \cdot 10^{-7} \) | \(a_{615}= -0.10460569 \pm 1.8 \cdot 10^{-7} \) |
\(a_{616}= +0.41621967 \pm 1.0 \cdot 10^{-6} \) | \(a_{617}= +0.12628389 \pm 5.4 \cdot 10^{-7} \) | \(a_{618}= +1.72704305 \pm 1.3 \cdot 10^{-6} \) |
\(a_{619}= -0.53790649 \pm 4.2 \cdot 10^{-7} \) | \(a_{620}= +0.35351739 \pm 8.4 \cdot 10^{-7} \) | \(a_{621}= -0.63477425 \pm 2.4 \cdot 10^{-7} \) |
\(a_{622}= -0.37177488 \pm 2.5 \cdot 10^{-7} \) | \(a_{623}= -0.28314681 \pm 9.5 \cdot 10^{-8} \) | \(a_{624}= -0.20208050 \pm 9.0 \cdot 10^{-7} \) |
\(a_{625}= +0.21417154 \pm 5.2 \cdot 10^{-7} \) | \(a_{626}= -0.57560737 \pm 3.5 \cdot 10^{-7} \) | \(a_{627}= +0.20449268 \pm 8.2 \cdot 10^{-8} \) |
\(a_{628}= -0.34167773 \pm 6.1 \cdot 10^{-7} \) | \(a_{629}= -0.24373998 \pm 4.0 \cdot 10^{-7} \) | \(a_{630}= +0.55539213 \pm 1.0 \cdot 10^{-6} \) |
\(a_{631}= -0.78160157 \pm 6.3 \cdot 10^{-8} \) | \(a_{632}= -0.56683209 \pm 3.2 \cdot 10^{-7} \) | \(a_{633}= +1.10615822 \pm 2.8 \cdot 10^{-7} \) |
\(a_{634}= -0.49552123 \pm 1.7 \cdot 10^{-7} \) | \(a_{635}= +0.16884091 \pm 3.2 \cdot 10^{-7} \) | \(a_{636}= +0.24947691 \pm 9.5 \cdot 10^{-7} \) |
\(a_{637}= +0.11735290 \pm 4.9 \cdot 10^{-7} \) | \(a_{638}= -0.02588292 \pm 1.2 \cdot 10^{-6} \) | \(a_{639}= +1.53190540 \pm 3.4 \cdot 10^{-7} \) |
\(a_{640}= +0.04759616 \pm 2.3 \cdot 10^{-7} \) | \(a_{641}= +1.57590857 \pm 3.0 \cdot 10^{-7} \) | \(a_{642}= -0.96256473 \pm 6.9 \cdot 10^{-7} \) |
\(a_{643}= +0.98827932 \pm 1.1 \cdot 10^{-6} \) | \(a_{644}= +0.71970048 \pm 5.7 \cdot 10^{-7} \) | \(a_{645}= -0.38480840 \pm 7.2 \cdot 10^{-8} \) |
\(a_{646}= +0.04627397 \pm 7.4 \cdot 10^{-7} \) | \(a_{647}= +0.55346160 \pm 7.0 \cdot 10^{-7} \) | \(a_{648}= -0.20424258 \pm 4.1 \cdot 10^{-7} \) |
\(a_{649}= -1.22899122 \pm 6.1 \cdot 10^{-7} \) | \(a_{650}= -0.26644446 \pm 1.1 \cdot 10^{-6} \) | \(a_{651}= -2.20995829 \pm 1.2 \cdot 10^{-7} \) |
\(a_{652}= +0.62486173 \pm 6.9 \cdot 10^{-7} \) | \(a_{653}= -1.42226805 \pm 9.8 \cdot 10^{-7} \) | \(a_{654}= +0.18571815 \pm 1.1 \cdot 10^{-6} \) |
\(a_{655}= +0.96545629 \pm 1.9 \cdot 10^{-7} \) | \(a_{656}= +0.03188448 \pm 7.8 \cdot 10^{-7} \) | \(a_{657}= -1.95422375 \pm 8.0 \cdot 10^{-7} \) |
\(a_{658}= -1.31939614 \pm 8.2 \cdot 10^{-7} \) | \(a_{659}= +0.36116129 \pm 1.0 \cdot 10^{-6} \) | \(a_{660}= -0.43689046 \pm 1.2 \cdot 10^{-6} \) |
\(a_{661}= +1.76594769 \pm 2.1 \cdot 10^{-7} \) | \(a_{662}= +1.02539886 \pm 6.3 \cdot 10^{-7} \) | \(a_{663}= +0.41974356 \pm 1.0 \cdot 10^{-7} \) |
\(a_{664}= +0.56656815 \pm 3.4 \cdot 10^{-7} \) | \(a_{665}= -0.07499114 \pm 2.2 \cdot 10^{-8} \) | \(a_{666}= +0.43809567 \pm 1.3 \cdot 10^{-6} \) |
\(a_{667}= -0.04475509 \pm 2.3 \cdot 10^{-7} \) | \(a_{668}= -0.29527131 \pm 7.1 \cdot 10^{-7} \) | \(a_{669}= +1.13259904 \pm 4.3 \cdot 10^{-7} \) |
\(a_{670}= +0.29583659 \pm 1.2 \cdot 10^{-6} \) | \(a_{671}= -0.90390618 \pm 1.4 \cdot 10^{-7} \) | \(a_{672}= -0.29753987 \pm 5.7 \cdot 10^{-7} \) |
\(a_{673}= -1.20850027 \pm 3.1 \cdot 10^{-7} \) | \(a_{674}= +1.16133180 \pm 6.7 \cdot 10^{-7} \) | \(a_{675}= +0.34601504 \pm 4.1 \cdot 10^{-7} \) |
\(a_{676}= -0.35918123 \pm 2.0 \cdot 10^{-7} \) | \(a_{677}= -0.38013848 \pm 5.5 \cdot 10^{-7} \) | \(a_{678}= -0.40261886 \pm 8.0 \cdot 10^{-7} \) |
\(a_{679}= +1.32200704 \pm 5.5 \cdot 10^{-8} \) | \(a_{680}= -0.09886248 \pm 6.6 \cdot 10^{-7} \) | \(a_{681}= +0.99899694 \pm 3.0 \cdot 10^{-7} \) |
\(a_{682}= +0.98908926 \pm 1.3 \cdot 10^{-6} \) | \(a_{683}= -1.52083272 \pm 6.5 \cdot 10^{-7} \) | \(a_{684}= -0.08317234 \pm 8.4 \cdot 10^{-7} \) |
\(a_{685}= -0.37890024 \pm 1.0 \cdot 10^{-7} \) | \(a_{686}= -0.60859833 \pm 4.6 \cdot 10^{-7} \) | \(a_{687}= -0.12650039 \pm 2.1 \cdot 10^{-7} \) |
\(a_{688}= +0.11729205 \pm 1.8 \cdot 10^{-7} \) | \(a_{689}= -0.17384672 \pm 5.9 \cdot 10^{-7} \) | \(a_{690}= -0.75544308 \pm 8.5 \cdot 10^{-7} \) |
\(a_{691}= +0.75560628 \pm 9.5 \cdot 10^{-7} \) | \(a_{692}= -0.15945547 \pm 9.8 \cdot 10^{-7} \) | \(a_{693}= +1.55390485 \pm 2.5 \cdot 10^{-7} \) |
\(a_{694}= -0.86932554 \pm 5.5 \cdot 10^{-7} \) | \(a_{695}= -0.93312622 \pm 2.4 \cdot 10^{-7} \) | \(a_{696}= +0.01850273 \pm 8.4 \cdot 10^{-7} \) |
\(a_{697}= -0.06622759 \pm 4.9 \cdot 10^{-7} \) | \(a_{698}= -0.59402676 \pm 6.1 \cdot 10^{-7} \) | \(a_{699}= -1.29663675 \pm 2.0 \cdot 10^{-7} \) |
\(a_{700}= -0.39230827 \pm 8.4 \cdot 10^{-7} \) | \(a_{701}= +0.95259299 \pm 7.8 \cdot 10^{-7} \) | \(a_{702}= -0.18287267 \pm 1.0 \cdot 10^{-6} \) |
\(a_{703}= -0.05915333 \pm 2.4 \cdot 10^{-7} \) | \(a_{704}= +0.13316699 \pm 7.5 \cdot 10^{-7} \) | \(a_{705}= +1.38492153 \pm 1.1 \cdot 10^{-7} \) |
\(a_{706}= +1.05433215 \pm 1.0 \cdot 10^{-6} \) | \(a_{707}= +0.44612543 \pm 3.6 \cdot 10^{-8} \) | \(a_{708}= +0.87855984 \pm 8.4 \cdot 10^{-7} \) |
\(a_{709}= -0.92090184 \pm 1.1 \cdot 10^{-7} \) | \(a_{710}= +0.44191321 \pm 6.7 \cdot 10^{-7} \) | \(a_{711}= -2.11619775 \pm 2.4 \cdot 10^{-7} \) |
\(a_{712}= -0.09059112 \pm 3.2 \cdot 10^{-7} \) | \(a_{713}= +1.71026999 \pm 2.7 \cdot 10^{-7} \) | \(a_{714}= +0.61802324 \pm 1.0 \cdot 10^{-6} \) |
\(a_{715}= +0.30444489 \pm 1.7 \cdot 10^{-7} \) | \(a_{716}= -0.06761216 \pm 1.2 \cdot 10^{-6} \) | \(a_{717}= -1.15804439 \pm 3.9 \cdot 10^{-7} \) |
\(a_{718}= +0.37201641 \pm 2.2 \cdot 10^{-7} \) | \(a_{719}= +0.96137872 \pm 5.7 \cdot 10^{-7} \) | \(a_{720}= +0.17769438 \pm 7.6 \cdot 10^{-7} \) |
\(a_{721}= -1.77198510 \pm 4.0 \cdot 10^{-7} \) | \(a_{722}= -0.69587654 \pm 6.2 \cdot 10^{-7} \) | \(a_{723}= +1.28314847 \pm 2.7 \cdot 10^{-7} \) |
\(a_{724}= -0.41981397 \pm 4.0 \cdot 10^{-7} \) | \(a_{725}= +0.02439597 \pm 4.8 \cdot 10^{-7} \) | \(a_{726}= -0.14533384 \pm 6.4 \cdot 10^{-7} \) |
\(a_{727}= +0.96171966 \pm 4.2 \cdot 10^{-7} \) | \(a_{728}= +0.20733915 \pm 8.5 \cdot 10^{-7} \) | \(a_{729}= -1.50477726 \pm 2.4 \cdot 10^{-7} \) |
\(a_{730}= -0.56374062 \pm 1.1 \cdot 10^{-6} \) | \(a_{731}= -0.24362856 \pm 1.5 \cdot 10^{-7} \) | \(a_{732}= +0.64616871 \pm 5.9 \cdot 10^{-7} \) |
\(a_{733}= -0.94816713 \pm 8.6 \cdot 10^{-7} \) | \(a_{734}= -0.62450148 \pm 7.2 \cdot 10^{-7} \) | \(a_{735}= -0.18136962 \pm 1.6 \cdot 10^{-7} \) |
\(a_{736}= +0.23026385 \pm 3.2 \cdot 10^{-7} \) | \(a_{737}= +0.82770692 \pm 1.1 \cdot 10^{-6} \) | \(a_{738}= +0.11903678 \pm 1.3 \cdot 10^{-6} \) |
\(a_{739}= -0.56742924 \pm 4.8 \cdot 10^{-7} \) | \(a_{740}= +0.12637873 \pm 9.9 \cdot 10^{-7} \) | \(a_{741}= +0.10186769 \pm 6.7 \cdot 10^{-8} \) |
\(a_{742}= -0.25596894 \pm 8.9 \cdot 10^{-7} \) | \(a_{743}= -0.29100496 \pm 2.6 \cdot 10^{-7} \) | \(a_{744}= -0.70706291 \pm 9.3 \cdot 10^{-7} \) |
\(a_{745}= -0.15976649 \pm 2.8 \cdot 10^{-8} \) | \(a_{746}= +0.44708202 \pm 5.0 \cdot 10^{-7} \) | \(a_{747}= +2.11521236 \pm 2.6 \cdot 10^{-7} \) |
\(a_{748}= -0.27660257 \pm 1.1 \cdot 10^{-6} \) | \(a_{749}= +0.98761311 \pm 1.6 \cdot 10^{-7} \) | \(a_{750}= +0.99175548 \pm 6.8 \cdot 10^{-7} \) |
\(a_{751}= +1.61044591 \pm 4.2 \cdot 10^{-7} \) | \(a_{752}= -0.42213289 \pm 5.6 \cdot 10^{-7} \) | \(a_{753}= +1.29881045 \pm 3.6 \cdot 10^{-7} \) |
\(a_{754}= -0.01289353 \pm 1.1 \cdot 10^{-6} \) | \(a_{755}= -0.51103189 \pm 1.9 \cdot 10^{-7} \) | \(a_{756}= -0.26925860 \pm 7.4 \cdot 10^{-7} \) |
\(a_{757}= -1.06129732 \pm 1.1 \cdot 10^{-6} \) | \(a_{758}= -0.71589698 \pm 2.8 \cdot 10^{-7} \) | \(a_{759}= -2.11361774 \pm 1.7 \cdot 10^{-7} \) |
\(a_{760}= -0.02399297 \pm 5.4 \cdot 10^{-7} \) | \(a_{761}= -0.44998587 \pm 2.0 \cdot 10^{-7} \) | \(a_{762}= -0.33769525 \pm 1.0 \cdot 10^{-6} \) |
\(a_{763}= -0.19055101 \pm 3.1 \cdot 10^{-7} \) | \(a_{764}= -0.10051329 \pm 3.7 \cdot 10^{-7} \) | \(a_{765}= -0.36909090 \pm 6.8 \cdot 10^{-8} \) |
\(a_{766}= +0.71818088 \pm 3.6 \cdot 10^{-7} \) | \(a_{767}= -0.61221996 \pm 4.8 \cdot 10^{-7} \) | \(a_{768}= -0.09519610 \pm 3.1 \cdot 10^{-7} \) |
\(a_{769}= +1.04529532 \pm 2.4 \cdot 10^{-7} \) | \(a_{770}= +0.44825946 \pm 1.2 \cdot 10^{-6} \) | \(a_{771}= +0.84887726 \pm 1.6 \cdot 10^{-7} \) |
\(a_{772}= +0.41884271 \pm 5.6 \cdot 10^{-7} \) | \(a_{773}= -1.32686008 \pm 1.0 \cdot 10^{-6} \) | \(a_{774}= +0.43789540 \pm 7.1 \cdot 10^{-7} \) |
\(a_{775}= -0.93226709 \pm 5.7 \cdot 10^{-7} \) | \(a_{776}= +0.42296823 \pm 1.6 \cdot 10^{-7} \) | \(a_{777}= -0.79003674 \pm 1.3 \cdot 10^{-7} \) |
\(a_{778}= +1.05084633 \pm 1.0 \cdot 10^{-6} \) | \(a_{779}= -0.01607280 \pm 3.4 \cdot 10^{-7} \) | \(a_{780}= -0.21763626 \pm 1.1 \cdot 10^{-6} \) |
\(a_{781}= +1.23640766 \pm 4.9 \cdot 10^{-7} \) | \(a_{782}= -0.47828351 \pm 7.5 \cdot 10^{-7} \) | \(a_{783}= +0.01674404 \pm 3.7 \cdot 10^{-7} \) |
\(a_{784}= +0.05528261 \pm 5.6 \cdot 10^{-7} \) | \(a_{785}= -0.36797942 \pm 2.4 \cdot 10^{-7} \) | \(a_{786}= -1.93098937 \pm 8.2 \cdot 10^{-7} \) |
\(a_{787}= +1.00757450 \pm 5.8 \cdot 10^{-7} \) | \(a_{788}= +0.58341654 \pm 8.4 \cdot 10^{-7} \) | \(a_{789}= +0.66408689 \pm 3.2 \cdot 10^{-7} \) |
\(a_{790}= -0.61046573 \pm 5.4 \cdot 10^{-7} \) | \(a_{791}= +0.41309603 \pm 2.2 \cdot 10^{-7} \) | \(a_{792}= +0.49716254 \pm 1.2 \cdot 10^{-6} \) |
\(a_{793}= -0.45027938 \pm 1.1 \cdot 10^{-7} \) | \(a_{794}= +0.76264193 \pm 4.7 \cdot 10^{-7} \) | \(a_{795}= +0.26868116 \pm 1.1 \cdot 10^{-7} \) |
\(a_{796}= -0.39885654 \pm 6.6 \cdot 10^{-7} \) | \(a_{797}= +1.23507132 \pm 6.7 \cdot 10^{-7} \) | \(a_{798}= +0.14998825 \pm 8.7 \cdot 10^{-7} \) |
\(a_{799}= +0.87681672 \pm 3.3 \cdot 10^{-7} \) | \(a_{800}= -0.12551668 \pm 5.9 \cdot 10^{-7} \) | \(a_{801}= -0.33821080 \pm 1.6 \cdot 10^{-7} \) |
\(a_{802}= -0.91791612 \pm 3.3 \cdot 10^{-7} \) | \(a_{803}= -1.57726267 \pm 1.1 \cdot 10^{-6} \) | \(a_{804}= -0.59169671 \pm 1.3 \cdot 10^{-6} \) |
\(a_{805}= +0.77510163 \pm 3.7 \cdot 10^{-8} \) | \(a_{806}= +0.49271319 \pm 1.2 \cdot 10^{-6} \) | \(a_{807}= -1.28250890 \pm 3.3 \cdot 10^{-7} \) |
\(a_{808}= +0.14273516 \pm 3.0 \cdot 10^{-7} \) | \(a_{809}= -0.26717889 \pm 2.5 \cdot 10^{-7} \) | \(a_{810}= -0.21996478 \pm 6.4 \cdot 10^{-7} \) |
\(a_{811}= -1.63414786 \pm 3.4 \cdot 10^{-7} \) | \(a_{812}= -0.01898422 \pm 7.9 \cdot 10^{-7} \) | \(a_{813}= -0.07742532 \pm 2.8 \cdot 10^{-7} \) |
\(a_{814}= +0.35358896 \pm 1.5 \cdot 10^{-6} \) | \(a_{815}= +0.67296237 \pm 2.9 \cdot 10^{-7} \) | \(a_{816}= +0.19773283 \pm 7.4 \cdot 10^{-7} \) |
\(a_{817}= -0.05912629 \pm 1.3 \cdot 10^{-7} \) | \(a_{818}= -0.46694886 \pm 2.6 \cdot 10^{-7} \) | \(a_{819}= +0.77407515 \pm 1.9 \cdot 10^{-7} \) |
\(a_{820}= +0.03433889 \pm 1.0 \cdot 10^{-6} \) | \(a_{821}= +0.75486469 \pm 1.7 \cdot 10^{-7} \) | \(a_{822}= +0.75783062 \pm 5.9 \cdot 10^{-7} \) |
\(a_{823}= +0.69745534 \pm 7.3 \cdot 10^{-7} \) | \(a_{824}= -0.56693601 \pm 1.0 \cdot 10^{-6} \) | \(a_{825}= +1.15213169 \pm 2.7 \cdot 10^{-7} \) |
\(a_{826}= -0.90142220 \pm 7.8 \cdot 10^{-7} \) | \(a_{827}= -1.25551202 \pm 1.1 \cdot 10^{-6} \) | \(a_{828}= +0.85966172 \pm 8.5 \cdot 10^{-7} \) |
\(a_{829}= -0.67573124 \pm 1.1 \cdot 10^{-6} \) | \(a_{830}= +0.61018147 \pm 5.7 \cdot 10^{-7} \) | \(a_{831}= +0.26561852 \pm 3.1 \cdot 10^{-7} \) |
\(a_{832}= +0.06633692 \pm 5.9 \cdot 10^{-7} \) | \(a_{833}= -0.11482810 \pm 3.9 \cdot 10^{-7} \) | \(a_{834}= +1.86632666 \pm 1.2 \cdot 10^{-6} \) |
\(a_{835}= -0.31800073 \pm 1.9 \cdot 10^{-7} \) | \(a_{836}= -0.06712876 \pm 1.0 \cdot 10^{-6} \) | \(a_{837}= -0.63985632 \pm 4.3 \cdot 10^{-7} \) |
\(a_{838}= -0.32930626 \pm 9.7 \cdot 10^{-7} \) | \(a_{839}= +0.95445590 \pm 7.8 \cdot 10^{-8} \) | \(a_{840}= -0.32044391 \pm 7.9 \cdot 10^{-7} \) |
\(a_{841}= -0.99881945 \pm 2.3 \cdot 10^{-7} \) | \(a_{842}= +0.80985089 \pm 2.0 \cdot 10^{-7} \) | \(a_{843}= -0.45528452 \pm 2.2 \cdot 10^{-7} \) |
\(a_{844}= -0.36311829 \pm 3.0 \cdot 10^{-7} \) | \(a_{845}= -0.38683031 \pm 1.6 \cdot 10^{-7} \) | \(a_{846}= -1.57598111 \pm 1.0 \cdot 10^{-6} \) |
\(a_{847}= +0.14911579 \pm 1.1 \cdot 10^{-7} \) | \(a_{848}= -0.08189573 \pm 6.4 \cdot 10^{-7} \) | \(a_{849}= +0.22640045 \pm 2.8 \cdot 10^{-7} \) |
\(a_{850}= +0.26071204 \pm 1.0 \cdot 10^{-6} \) | \(a_{851}= +0.61140345 \pm 3.3 \cdot 10^{-7} \) | \(a_{852}= -0.88386157 \pm 7.6 \cdot 10^{-7} \) |
\(a_{853}= -0.70953399 \pm 6.2 \cdot 10^{-7} \) | \(a_{854}= -0.66298366 \pm 5.4 \cdot 10^{-7} \) | \(a_{855}= -0.08957478 \pm 3.8 \cdot 10^{-8} \) |
\(a_{856}= +0.31598089 \pm 3.8 \cdot 10^{-7} \) | \(a_{857}= +0.20136449 \pm 4.7 \cdot 10^{-7} \) | \(a_{858}= -0.60891400 \pm 1.6 \cdot 10^{-6} \) |
\(a_{859}= +1.54422252 \pm 3.7 \cdot 10^{-7} \) | \(a_{860}= +0.12632096 \pm 4.1 \cdot 10^{-7} \) | \(a_{861}= -0.21466413 \pm 1.4 \cdot 10^{-7} \) |
\(a_{862}= +0.21695743 \pm 9.5 \cdot 10^{-7} \) | \(a_{863}= +1.28194289 \pm 4.5 \cdot 10^{-7} \) | \(a_{864}= -0.08614767 \pm 4.8 \cdot 10^{-7} \) |
\(a_{865}= -0.17173005 \pm 2.5 \cdot 10^{-7} \) | \(a_{866}= +0.45806054 \pm 4.3 \cdot 10^{-7} \) | \(a_{867}= +1.11242458 \pm 3.8 \cdot 10^{-7} \) |
\(a_{868}= +0.72546248 \pm 8.7 \cdot 10^{-7} \) | \(a_{869}= -1.70799260 \pm 3.4 \cdot 10^{-7} \) | \(a_{870}= +0.01992704 \pm 1.0 \cdot 10^{-6} \) |
\(a_{871}= +0.41232084 \pm 9.4 \cdot 10^{-7} \) | \(a_{872}= -0.06096565 \pm 7.9 \cdot 10^{-7} \) | \(a_{873}= +1.57909975 \pm 8.7 \cdot 10^{-8} \) |
\(a_{874}= -0.11607477 \pm 6.2 \cdot 10^{-7} \) | \(a_{875}= -1.01756348 \pm 1.2 \cdot 10^{-7} \) | \(a_{876}= +1.12752607 \pm 1.2 \cdot 10^{-6} \) |
\(a_{877}= -0.12133696 \pm 1.1 \cdot 10^{-6} \) | \(a_{878}= -1.18473428 \pm 1.8 \cdot 10^{-7} \) | \(a_{879}= -2.23605614 \pm 2.9 \cdot 10^{-7} \) |
\(a_{880}= +0.14341793 \pm 9.7 \cdot 10^{-7} \) | \(a_{881}= +0.13041402 \pm 2.2 \cdot 10^{-7} \) | \(a_{882}= +0.20639082 \pm 1.0 \cdot 10^{-6} \) |
\(a_{883}= -1.99025249 \pm 4.7 \cdot 10^{-7} \) | \(a_{884}= -0.13778912 \pm 1.0 \cdot 10^{-6} \) | \(a_{885}= +0.94618968 \pm 1.0 \cdot 10^{-7} \) |
\(a_{886}= +0.90821634 \pm 5.7 \cdot 10^{-7} \) | \(a_{887}= +1.57948100 \pm 8.9 \cdot 10^{-7} \) | \(a_{888}= -0.25276752 \pm 1.0 \cdot 10^{-6} \) |
\(a_{889}= +0.34648294 \pm 2.8 \cdot 10^{-7} \) | \(a_{890}= -0.09756465 \pm 5.5 \cdot 10^{-7} \) | \(a_{891}= -0.61542884 \pm 4.4 \cdot 10^{-7} \) |
\(a_{892}= -0.37179801 \pm 9.9 \cdot 10^{-7} \) | \(a_{893}= +0.21279492 \pm 2.2 \cdot 10^{-7} \) | \(a_{894}= +0.31954568 \pm 3.9 \cdot 10^{-7} \) |
\(a_{895}= -0.07281682 \pm 3.2 \cdot 10^{-7} \) | \(a_{896}= +0.09767334 \pm 2.6 \cdot 10^{-7} \) | \(a_{897}= -1.05289521 \pm 1.3 \cdot 10^{-7} \) |
\(a_{898}= -0.38681804 \pm 9.0 \cdot 10^{-7} \) | \(a_{899}= -0.04511341 \pm 5.0 \cdot 10^{-7} \) | \(a_{900}= -0.46860106 \pm 1.1 \cdot 10^{-6} \) |
\(a_{901}= +0.17010649 \pm 3.4 \cdot 10^{-7} \) | \(a_{902}= +0.09607511 \pm 1.5 \cdot 10^{-6} \) | \(a_{903}= -0.78967558 \pm 1.0 \cdot 10^{-7} \) |
\(a_{904}= +0.13216760 \pm 4.9 \cdot 10^{-7} \) | \(a_{905}= -0.45213043 \pm 1.8 \cdot 10^{-7} \) | \(a_{906}= +1.02210443 \pm 1.0 \cdot 10^{-6} \) |
\(a_{907}= +0.58458373 \pm 9.8 \cdot 10^{-7} \) | \(a_{908}= -0.32794049 \pm 6.1 \cdot 10^{-7} \) | \(a_{909}= +0.53288411 \pm 7.3 \cdot 10^{-8} \) |
\(a_{910}= +0.22329971 \pm 1.0 \cdot 10^{-6} \) | \(a_{911}= -0.59418607 \pm 7.3 \cdot 10^{-7} \) | \(a_{912}= +0.04798784 \pm 6.2 \cdot 10^{-7} \) |
\(a_{913}= +1.70719729 \pm 3.7 \cdot 10^{-7} \) | \(a_{914}= -0.59731997 \pm 5.0 \cdot 10^{-7} \) | \(a_{915}= +0.69590953 \pm 1.9 \cdot 10^{-7} \) |
\(a_{916}= +0.04152625 \pm 5.6 \cdot 10^{-7} \) | \(a_{917}= +1.98123862 \pm 1.8 \cdot 10^{-7} \) | \(a_{918}= +0.17893825 \pm 9.1 \cdot 10^{-7} \) |
\(a_{919}= +0.94054054 \pm 1.1 \cdot 10^{-6} \) | \(a_{920}= +0.24798912 \pm 5.4 \cdot 10^{-7} \) | \(a_{921}= -0.91527229 \pm 2.3 \cdot 10^{-7} \) |
\(a_{922}= -0.95518510 \pm 3.9 \cdot 10^{-7} \) | \(a_{923}= +0.61591444 \pm 3.8 \cdot 10^{-7} \) | \(a_{924}= -0.89655456 \pm 1.3 \cdot 10^{-6} \) |
\(a_{925}= -0.33327563 \pm 7.0 \cdot 10^{-7} \) | \(a_{926}= -0.50304617 \pm 5.7 \cdot 10^{-7} \) | \(a_{927}= -2.11658572 \pm 8.6 \cdot 10^{-7} \) |
\(a_{928}= -0.00607389 \pm 5.3 \cdot 10^{-7} \) | \(a_{929}= -1.61003212 \pm 7.3 \cdot 10^{-7} \) | \(a_{930}= -0.76149124 \pm 1.1 \cdot 10^{-6} \) |
\(a_{931}= -0.02786767 \pm 2.8 \cdot 10^{-7} \) | \(a_{932}= +0.42564663 \pm 5.0 \cdot 10^{-7} \) | \(a_{933}= +0.80081863 \pm 1.9 \cdot 10^{-7} \) |
\(a_{934}= +1.03287726 \pm 4.4 \cdot 10^{-7} \) | \(a_{935}= -0.29789490 \pm 9.1 \cdot 10^{-8} \) | \(a_{936}= +0.24766070 \pm 1.1 \cdot 10^{-6} \) |
\(a_{937}= -1.05662109 \pm 1.1 \cdot 10^{-6} \) | \(a_{938}= +0.60709416 \pm 1.2 \cdot 10^{-6} \) | \(a_{939}= +1.23988233 \pm 1.6 \cdot 10^{-7} \) |
\(a_{940}= -0.45462786 \pm 7.9 \cdot 10^{-7} \) | \(a_{941}= -0.53627016 \pm 1.9 \cdot 10^{-7} \) | \(a_{942}= +0.73598810 \pm 9.2 \cdot 10^{-7} \) |
\(a_{943}= +0.16612695 \pm 3.5 \cdot 10^{-7} \) | \(a_{944}= -0.28840463 \pm 5.3 \cdot 10^{-7} \) | \(a_{945}= -0.28998560 \pm 4.6 \cdot 10^{-8} \) |
\(a_{946}= +0.35342732 \pm 9.2 \cdot 10^{-7} \) | \(a_{947}= -0.99230685 \pm 4.4 \cdot 10^{-7} \) | \(a_{948}= +1.22098001 \pm 6.2 \cdot 10^{-7} \) |
\(a_{949}= -0.78571081 \pm 8.9 \cdot 10^{-7} \) | \(a_{950}= +0.06327228 \pm 8.9 \cdot 10^{-7} \) | \(a_{951}= +1.06737345 \pm 1.2 \cdot 10^{-7} \) |
\(a_{952}= -0.20287834 \pm 6.9 \cdot 10^{-7} \) | \(a_{953}= +1.86072012 \pm 1.8 \cdot 10^{-7} \) | \(a_{954}= -0.30574760 \pm 1.1 \cdot 10^{-6} \) |
\(a_{955}= -0.10825061 \pm 1.2 \cdot 10^{-7} \) | \(a_{956}= +0.38015095 \pm 6.4 \cdot 10^{-7} \) | \(a_{957}= +0.05575289 \pm 2.3 \cdot 10^{-7} \) |
\(a_{958}= -0.56383667 \pm 3.7 \cdot 10^{-7} \) | \(a_{959}= -0.77755130 \pm 1.5 \cdot 10^{-7} \) | \(a_{960}= -0.10252411 \pm 5.4 \cdot 10^{-7} \) |
\(a_{961}= +0.72396260 \pm 1.8 \cdot 10^{-7} \) | \(a_{962}= +0.17613976 \pm 1.3 \cdot 10^{-6} \) | \(a_{963}= +1.17967572 \pm 3.1 \cdot 10^{-7} \) |
\(a_{964}= -0.42121884 \pm 6.6 \cdot 10^{-7} \) | \(a_{965}= +0.45108441 \pm 2.6 \cdot 10^{-7} \) | \(a_{966}= -1.55026490 \pm 8.8 \cdot 10^{-7} \) |
\(a_{967}= -0.93843430 \pm 2.5 \cdot 10^{-7} \) | \(a_{968}= +0.04770870 \pm 3.4 \cdot 10^{-7} \) | \(a_{969}= -0.09967606 \pm 4.2 \cdot 10^{-7} \) |
\(a_{970}= +0.45552750 \pm 3.8 \cdot 10^{-7} \) | \(a_{971}= -0.28636585 \pm 3.9 \cdot 10^{-7} \) | \(a_{972}= +0.68360947 \pm 5.8 \cdot 10^{-7} \) |
\(a_{973}= -1.91489322 \pm 3.9 \cdot 10^{-7} \) | \(a_{974}= +1.09953161 \pm 6.1 \cdot 10^{-7} \) | \(a_{975}= +0.57393251 \pm 2.1 \cdot 10^{-7} \) |
\(a_{976}= -0.21211765 \pm 2.8 \cdot 10^{-7} \) | \(a_{977}= -0.29217813 \pm 4.3 \cdot 10^{-7} \) | \(a_{978}= -1.34597827 \pm 1.0 \cdot 10^{-6} \) |
\(a_{979}= -0.27297144 \pm 2.3 \cdot 10^{-7} \) | \(a_{980}= +0.05953816 \pm 7.8 \cdot 10^{-7} \) | \(a_{981}= -0.22760776 \pm 6.3 \cdot 10^{-7} \) |
\(a_{982}= -1.06997277 \pm 3.9 \cdot 10^{-7} \) | \(a_{983}= -0.60664135 \pm 3.5 \cdot 10^{-7} \) | \(a_{984}= -0.06868050 \pm 1.0 \cdot 10^{-6} \) |
\(a_{985}= +0.62832681 \pm 2.2 \cdot 10^{-7} \) | \(a_{986}= +0.01261614 \pm 9.6 \cdot 10^{-7} \) | \(a_{987}= +2.84203443 \pm 9.2 \cdot 10^{-8} \) |
\(a_{988}= -0.03344008 \pm 9.0 \cdot 10^{-7} \) | \(a_{989}= +0.61112395 \pm 1.6 \cdot 10^{-7} \) | \(a_{990}= +0.53543315 \pm 1.5 \cdot 10^{-6} \) |
\(a_{991}= +1.43759501 \pm 6.3 \cdot 10^{-8} \) | \(a_{992}= +0.23210737 \pm 6.2 \cdot 10^{-7} \) | \(a_{993}= -2.20875201 \pm 2.8 \cdot 10^{-7} \) |
\(a_{994}= +0.90686189 \pm 7.0 \cdot 10^{-7} \) | \(a_{995}= -0.42955974 \pm 3.3 \cdot 10^{-7} \) | \(a_{996}= -1.22041147 \pm 6.5 \cdot 10^{-7} \) |
\(a_{997}= -0.43631608 \pm 3.4 \cdot 10^{-7} \) | \(a_{998}= +0.57097979 \pm 8.6 \cdot 10^{-7} \) | \(a_{999}= -0.22874188 \pm 5.4 \cdot 10^{-7} \) |
\(a_{1000}= -0.32556333 \pm 3.7 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000