Maass form invariants
Level: | \( 7 \) |
Weight: | \( 0 \) |
Character: | 7.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(7.05407006402443772681162287093 \pm 3 \cdot 10^{-12}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.40005431 \pm 7.7 \cdot 10^{-8} \) | \(a_{3}= +0.77754554 \pm 5.1 \cdot 10^{-8} \) |
\(a_{4}= +0.96015208 \pm 4.6 \cdot 10^{-8} \) | \(a_{5}= +0.34215209 \pm 5.4 \cdot 10^{-8} \) | \(a_{6}= -1.08860598 \pm 6.1 \cdot 10^{-8} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.05578925 \pm 5.0 \cdot 10^{-8} \) | \(a_{9}= -0.39542294 \pm 4.8 \cdot 10^{-8} \) |
\(a_{10}= -0.47903151 \pm 5.6 \cdot 10^{-8} \) | \(a_{11}= -1.64843106 \pm 4.6 \cdot 10^{-8} \) | \(a_{12}= +0.74656197 \pm 4.0 \cdot 10^{-8} \) |
\(a_{13}= +0.36765423 \pm 5.6 \cdot 10^{-8} \) | \(a_{14}= +0.52917079 \pm 8.7 \cdot 10^{-8} \) | \(a_{15}= +0.26603883 \pm 4.3 \cdot 10^{-8} \) |
\(a_{16}= -1.03826006 \pm 6.5 \cdot 10^{-8} \) | \(a_{17}= -0.30573775 \pm 4.2 \cdot 10^{-8} \) | \(a_{18}= +0.55361359 \pm 4.6 \cdot 10^{-8} \) |
\(a_{19}= -1.46294233 \pm 5.4 \cdot 10^{-8} \) | \(a_{20}= +0.32851804 \pm 3.5 \cdot 10^{-8} \) | \(a_{21}= -0.29388459 \pm 6.2 \cdot 10^{-8} \) |
\(a_{22}= +2.30789302 \pm 4.6 \cdot 10^{-8} \) | \(a_{23}= +0.15051419 \pm 6.9 \cdot 10^{-8} \) | \(a_{24}= +0.04337868 \pm 3.3 \cdot 10^{-8} \) |
\(a_{25}= -0.88293195 \pm 5.1 \cdot 10^{-8} \) | \(a_{26}= -0.51473589 \pm 6.8 \cdot 10^{-8} \) | \(a_{27}= -1.08500488 \pm 5.6 \cdot 10^{-8} \) |
\(a_{28}= -0.36290338 \pm 5.6 \cdot 10^{-8} \) | \(a_{29}= +1.80198246 \pm 5.1 \cdot 10^{-8} \) | \(a_{30}= -0.37246881 \pm 4.9 \cdot 10^{-8} \) |
\(a_{31}= -0.35875082 \pm 4.1 \cdot 10^{-8} \) | \(a_{32}= +1.39783123 \pm 6.7 \cdot 10^{-8} \) | \(a_{33}= -1.28173021 \pm 3.8 \cdot 10^{-8} \) |
\(a_{34}= +0.42804945 \pm 5.0 \cdot 10^{-8} \) | \(a_{35}= -0.12932133 \pm 6.5 \cdot 10^{-8} \) | \(a_{36}= -0.37966616 \pm 2.7 \cdot 10^{-8} \) |
\(a_{37}= -0.70779263 \pm 5.2 \cdot 10^{-8} \) | \(a_{38}= +2.04819872 \pm 5.3 \cdot 10^{-8} \) | \(a_{39}= +0.28586790 \pm 4.2 \cdot 10^{-8} \) |
\(a_{40}= +0.01908841 \pm 5.2 \cdot 10^{-8} \) | \(a_{41}= -1.22347525 \pm 6.7 \cdot 10^{-8} \) | \(a_{42}= +0.41145439 \pm 1.3 \cdot 10^{-7} \) |
\(a_{43}= +0.10338373 \pm 4.0 \cdot 10^{-8} \) | \(a_{44}= -1.58274452 \pm 3.4 \cdot 10^{-8} \) | \(a_{45}= -0.13529478 \pm 4.3 \cdot 10^{-8} \) |
\(a_{46}= -0.21072804 \pm 8.2 \cdot 10^{-8} \) | \(a_{47}= +1.03833078 \pm 6.2 \cdot 10^{-8} \) | \(a_{48}= -0.80729447 \pm 4.9 \cdot 10^{-8} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +1.23615268 \pm 6.3 \cdot 10^{-8} \) | \(a_{51}= -0.23772502 \pm 3.1 \cdot 10^{-8} \) |
\(a_{52}= +0.35300397 \pm 3.6 \cdot 10^{-8} \) | \(a_{53}= +0.70159950 \pm 4.2 \cdot 10^{-8} \) | \(a_{54}= +1.51906576 \pm 7.1 \cdot 10^{-8} \) |
\(a_{55}= -0.56401413 \pm 4.5 \cdot 10^{-8} \) | \(a_{56}= -0.02108635 \pm 6.1 \cdot 10^{-8} \) | \(a_{57}= -1.13750428 \pm 2.7 \cdot 10^{-8} \) |
\(a_{58}= -2.52287331 \pm 5.2 \cdot 10^{-8} \) | \(a_{59}= +0.56523109 \pm 8.4 \cdot 10^{-8} \) | \(a_{60}= +0.25543774 \pm 3.5 \cdot 10^{-8} \) |
\(a_{61}= -0.47944809 \pm 6.0 \cdot 10^{-8} \) | \(a_{62}= +0.50227064 \pm 5.3 \cdot 10^{-8} \) | \(a_{63}= +0.14945582 \pm 5.9 \cdot 10^{-8} \) |
\(a_{64}= -0.91877958 \pm 5.3 \cdot 10^{-8} \) | \(a_{65}= +0.12579366 \pm 4.3 \cdot 10^{-8} \) | \(a_{66}= +1.79449192 \pm 3.4 \cdot 10^{-8} \) |
\(a_{67}= +0.19905352 \pm 7.6 \cdot 10^{-8} \) | \(a_{68}= -0.29355474 \pm 3.1 \cdot 10^{-8} \) | \(a_{69}= +0.11703164 \pm 5.1 \cdot 10^{-8} \) |
\(a_{70}= +0.18105689 \pm 1.4 \cdot 10^{-7} \) | \(a_{71}= +0.85967369 \pm 4.4 \cdot 10^{-8} \) | \(a_{72}= -0.02206035 \pm 4.8 \cdot 10^{-8} \) |
\(a_{73}= -0.79028430 \pm 7.3 \cdot 10^{-8} \) | \(a_{74}= +0.99094812 \pm 4.8 \cdot 10^{-8} \) | \(a_{75}= -0.68651979 \pm 4.6 \cdot 10^{-8} \) |
\(a_{76}= -1.40464713 \pm 2.9 \cdot 10^{-8} \) | \(a_{77}= +0.62304838 \pm 5.7 \cdot 10^{-8} \) | \(a_{78}= -0.40023059 \pm 5.5 \cdot 10^{-8} \) |
\(a_{79}= -0.15578586 \pm 4.5 \cdot 10^{-8} \) | \(a_{80}= -0.35524285 \pm 4.2 \cdot 10^{-8} \) | \(a_{81}= -0.44821776 \pm 5.0 \cdot 10^{-8} \) |
\(a_{82}= +1.71293180 \pm 8.2 \cdot 10^{-8} \) | \(a_{83}= -0.87630150 \pm 4.2 \cdot 10^{-8} \) | \(a_{84}= -0.28217390 \pm 1.0 \cdot 10^{-7} \) |
\(a_{85}= -0.10460881 \pm 3.6 \cdot 10^{-8} \) | \(a_{86}= -0.14474284 \pm 4.6 \cdot 10^{-8} \) | \(a_{87}= +1.40112341 \pm 2.7 \cdot 10^{-8} \) |
\(a_{88}= -0.09196473 \pm 4.7 \cdot 10^{-8} \) | \(a_{89}= -0.18461267 \pm 4.8 \cdot 10^{-8} \) | \(a_{90}= +0.18942005 \pm 3.9 \cdot 10^{-8} \) |
\(a_{91}= -0.13896024 \pm 6.7 \cdot 10^{-8} \) | \(a_{92}= +0.14451651 \pm 4.4 \cdot 10^{-8} \) | \(a_{93}= -0.27894510 \pm 3.9 \cdot 10^{-8} \) |
\(a_{94}= -1.45371949 \pm 6.5 \cdot 10^{-8} \) | \(a_{95}= -0.50054877 \pm 5.4 \cdot 10^{-8} \) | \(a_{96}= +1.08687743 \pm 5.9 \cdot 10^{-8} \) |
\(a_{97}= +1.93694139 \pm 9.3 \cdot 10^{-8} \) | \(a_{98}= -0.20000776 \pm 8.7 \cdot 10^{-8} \) | \(a_{99}= +0.65182746 \pm 4.5 \cdot 10^{-8} \) |
\(a_{100}= -0.84774895 \pm 3.7 \cdot 10^{-8} \) | \(a_{101}= +1.48572647 \pm 5.6 \cdot 10^{-8} \) | \(a_{102}= +0.33282794 \pm 3.9 \cdot 10^{-8} \) |
\(a_{103}= -1.27847623 \pm 7.4 \cdot 10^{-8} \) | \(a_{104}= +0.02051115 \pm 3.7 \cdot 10^{-8} \) | \(a_{105}= -0.10055323 \pm 1.1 \cdot 10^{-7} \) |
\(a_{106}= -0.98227741 \pm 4.5 \cdot 10^{-8} \) | \(a_{107}= -1.68018700 \pm 4.7 \cdot 10^{-8} \) | \(a_{108}= -1.04176969 \pm 4.3 \cdot 10^{-8} \) |
\(a_{109}= -0.51512811 \pm 9.6 \cdot 10^{-8} \) | \(a_{110}= +0.78965042 \pm 4.3 \cdot 10^{-8} \) | \(a_{111}= -0.55034100 \pm 4.9 \cdot 10^{-8} \) |
\(a_{112}= +0.39242542 \pm 7.5 \cdot 10^{-8} \) | \(a_{113}= +0.32474926 \pm 6.1 \cdot 10^{-8} \) | \(a_{114}= +1.59256777 \pm 3.0 \cdot 10^{-8} \) |
\(a_{115}= +0.05149874 \pm 4.2 \cdot 10^{-8} \) | \(a_{116}= +1.73017721 \pm 2.9 \cdot 10^{-8} \) | \(a_{117}= -0.14537892 \pm 3.8 \cdot 10^{-8} \) |
\(a_{118}= -0.79135422 \pm 1.1 \cdot 10^{-7} \) | \(a_{119}= +0.11555801 \pm 5.3 \cdot 10^{-8} \) | \(a_{120}= +0.01484211 \pm 3.5 \cdot 10^{-8} \) |
\(a_{121}= +1.71732497 \pm 4.9 \cdot 10^{-8} \) | \(a_{122}= +0.67125337 \pm 6.8 \cdot 10^{-8} \) | \(a_{123}= -0.95130772 \pm 4.7 \cdot 10^{-8} \) |
\(a_{124}= -0.34445535 \pm 3.5 \cdot 10^{-8} \) | \(a_{125}= -0.64424910 \pm 5.0 \cdot 10^{-8} \) | \(a_{126}= -0.20924627 \pm 1.3 \cdot 10^{-7} \) |
\(a_{127}= -0.25304024 \pm 6.6 \cdot 10^{-8} \) | \(a_{128}= -0.11148991 \pm 4.3 \cdot 10^{-8} \) | \(a_{129}= +0.08038556 \pm 3.4 \cdot 10^{-8} \) |
\(a_{130}= -0.17611796 \pm 5.2 \cdot 10^{-8} \) | \(a_{131}= -0.83810240 \pm 4.9 \cdot 10^{-8} \) | \(a_{132}= -1.23065593 \pm 2.8 \cdot 10^{-8} \) |
\(a_{133}= +0.55294023 \pm 6.4 \cdot 10^{-8} \) | \(a_{134}= -0.27868574 \pm 9.4 \cdot 10^{-8} \) | \(a_{135}= -0.37123668 \pm 3.5 \cdot 10^{-8} \) |
\(a_{136}= -0.01705688 \pm 3.5 \cdot 10^{-8} \) | \(a_{137}= +0.48028965 \pm 4.3 \cdot 10^{-8} \) | \(a_{138}= -0.16385065 \pm 5.9 \cdot 10^{-8} \) |
\(a_{139}= +1.73685148 \pm 4.0 \cdot 10^{-8} \) | \(a_{140}= -0.12416815 \pm 1.1 \cdot 10^{-7} \) | \(a_{141}= +0.80734946 \pm 4.0 \cdot 10^{-8} \) |
\(a_{142}= -1.20358986 \pm 5.3 \cdot 10^{-8} \) | \(a_{143}= -0.60605265 \pm 2.5 \cdot 10^{-8} \) | \(a_{144}= +0.41055185 \pm 3.8 \cdot 10^{-8} \) |
\(a_{145}= +0.61655206 \pm 4.8 \cdot 10^{-8} \) | \(a_{146}= +1.10644095 \pm 9.5 \cdot 10^{-8} \) | \(a_{147}= +0.11107793 \pm 6.2 \cdot 10^{-8} \) |
\(a_{148}= -0.67958857 \pm 3.1 \cdot 10^{-8} \) | \(a_{149}= -0.09209268 \pm 8.8 \cdot 10^{-8} \) | \(a_{150}= +0.96116500 \pm 5.4 \cdot 10^{-8} \) |
\(a_{151}= -0.78751496 \pm 6.1 \cdot 10^{-8} \) | \(a_{152}= -0.08161645 \pm 5.3 \cdot 10^{-8} \) | \(a_{153}= +0.12089572 \pm 3.5 \cdot 10^{-8} \) |
\(a_{154}= -0.87230157 \pm 1.3 \cdot 10^{-7} \) | \(a_{155}= -0.12274734 \pm 3.4 \cdot 10^{-8} \) | \(a_{156}= +0.27447666 \pm 3.4 \cdot 10^{-8} \) |
\(a_{157}= -0.29547862 \pm 7.2 \cdot 10^{-8} \) | \(a_{158}= +0.21810866 \pm 5.3 \cdot 10^{-8} \) | \(a_{159}= +0.54552556 \pm 3.8 \cdot 10^{-8} \) |
\(a_{160}= +0.47827087 \pm 4.4 \cdot 10^{-8} \) | \(a_{161}= -0.05688902 \pm 7.9 \cdot 10^{-8} \) | \(a_{162}= +0.62752920 \pm 5.7 \cdot 10^{-8} \) |
\(a_{163}= -0.67041078 \pm 6.0 \cdot 10^{-8} \) | \(a_{164}= -1.17472231 \pm 4.9 \cdot 10^{-8} \) | \(a_{165}= -0.43854667 \pm 3.1 \cdot 10^{-8} \) |
\(a_{166}= +1.22686969 \pm 4.3 \cdot 10^{-8} \) | \(a_{167}= -0.92282318 \pm 4.9 \cdot 10^{-8} \) | \(a_{168}= -0.01639560 \pm 1.1 \cdot 10^{-7} \) |
\(a_{169}= -0.86483037 \pm 4.6 \cdot 10^{-8} \) | \(a_{170}= +0.14645801 \pm 4.4 \cdot 10^{-8} \) | \(a_{171}= +0.57848096 \pm 4.6 \cdot 10^{-8} \) |
\(a_{172}= +0.09926410 \pm 2.5 \cdot 10^{-8} \) | \(a_{173}= -0.05032797 \pm 4.8 \cdot 10^{-8} \) | \(a_{174}= -1.96164888 \pm 3.4 \cdot 10^{-8} \) |
\(a_{175}= +0.33371691 \pm 6.2 \cdot 10^{-8} \) | \(a_{176}= +1.71150014 \pm 3.4 \cdot 10^{-8} \) | \(a_{177}= +0.43949291 \pm 7.0 \cdot 10^{-8} \) |
\(a_{178}= +0.25846776 \pm 4.9 \cdot 10^{-8} \) | \(a_{179}= -0.73964605 \pm 5.0 \cdot 10^{-8} \) | \(a_{180}= -0.12990357 \pm 2.2 \cdot 10^{-8} \) |
\(a_{181}= +0.68860477 \pm 8.1 \cdot 10^{-8} \) | \(a_{182}= +0.19455188 \pm 1.4 \cdot 10^{-7} \) | \(a_{183}= -0.37279273 \pm 3.9 \cdot 10^{-8} \) |
\(a_{184}= +0.00839707 \pm 4.7 \cdot 10^{-8} \) | \(a_{185}= -0.24217273 \pm 4.8 \cdot 10^{-8} \) | \(a_{186}= +0.39053829 \pm 5.0 \cdot 10^{-8} \) |
\(a_{187}= +0.50398760 \pm 2.3 \cdot 10^{-8} \) | \(a_{188}= +0.99695547 \pm 3.6 \cdot 10^{-8} \) | \(a_{189}= +0.41009330 \pm 6.7 \cdot 10^{-8} \) |
\(a_{190}= +0.70079547 \pm 4.7 \cdot 10^{-8} \) | \(a_{191}= +1.47362263 \pm 2.9 \cdot 10^{-8} \) | \(a_{192}= -0.71439296 \pm 3.6 \cdot 10^{-8} \) |
\(a_{193}= +0.31801074 \pm 7.5 \cdot 10^{-8} \) | \(a_{194}= -2.71182315 \pm 1.0 \cdot 10^{-7} \) | \(a_{195}= +0.09781030 \pm 3.9 \cdot 10^{-8} \) |
\(a_{196}= +0.13716458 \pm 5.6 \cdot 10^{-8} \) | \(a_{197}= -1.34074834 \pm 5.4 \cdot 10^{-8} \) | \(a_{198}= -0.91259385 \pm 3.8 \cdot 10^{-8} \) |
\(a_{199}= +0.26386004 \pm 9.4 \cdot 10^{-8} \) | \(a_{200}= -0.04925811 \pm 3.2 \cdot 10^{-8} \) | \(a_{201}= +0.15477317 \pm 5.9 \cdot 10^{-8} \) |
\(a_{202}= -2.08009775 \pm 6.9 \cdot 10^{-8} \) | \(a_{203}= -0.68108535 \pm 6.1 \cdot 10^{-8} \) | \(a_{204}= -0.22825217 \pm 2.9 \cdot 10^{-8} \) |
\(a_{205}= -0.41861461 \pm 4.9 \cdot 10^{-8} \) | \(a_{206}= +1.78993616 \pm 9.6 \cdot 10^{-8} \) | \(a_{207}= -0.05951676 \pm 5.0 \cdot 10^{-8} \) |
\(a_{208}= -0.38172070 \pm 6.1 \cdot 10^{-8} \) | \(a_{209}= +2.41155958 \pm 5.0 \cdot 10^{-8} \) | \(a_{210}= +0.14077998 \pm 1.9 \cdot 10^{-7} \) |
\(a_{211}= -1.62668554 \pm 3.9 \cdot 10^{-8} \) | \(a_{212}= +0.67364222 \pm 2.5 \cdot 10^{-8} \) | \(a_{213}= +0.66843544 \pm 3.3 \cdot 10^{-8} \) |
\(a_{214}= +2.35235306 \pm 4.9 \cdot 10^{-8} \) | \(a_{215}= +0.03537296 \pm 4.0 \cdot 10^{-8} \) | \(a_{216}= -0.06053161 \pm 3.0 \cdot 10^{-8} \) |
\(a_{217}= +0.13559507 \pm 5.2 \cdot 10^{-8} \) | \(a_{218}= +0.72120733 \pm 1.1 \cdot 10^{-7} \) | \(a_{219}= -0.61448203 \pm 6.0 \cdot 10^{-8} \) |
\(a_{220}= -0.54153934 \pm 3.3 \cdot 10^{-8} \) | \(a_{221}= -0.11240578 \pm 5.1 \cdot 10^{-8} \) | \(a_{222}= +0.77050729 \pm 4.0 \cdot 10^{-8} \) |
\(a_{223}= -0.14434609 \pm 5.9 \cdot 10^{-8} \) | \(a_{224}= -0.52833054 \pm 7.8 \cdot 10^{-8} \) | \(a_{225}= +0.34913155 \pm 2.5 \cdot 10^{-8} \) |
\(a_{226}= -0.45466660 \pm 7.4 \cdot 10^{-8} \) | \(a_{227}= -1.81761312 \pm 3.4 \cdot 10^{-8} \) | \(a_{228}= -1.09217710 \pm 1.9 \cdot 10^{-8} \) |
\(a_{229}= -0.42310371 \pm 5.9 \cdot 10^{-8} \) | \(a_{230}= -0.07210104 \pm 4.1 \cdot 10^{-8} \) | \(a_{231}= +0.48444848 \pm 1.0 \cdot 10^{-7} \) |
\(a_{232}= +0.10053125 \pm 4.6 \cdot 10^{-8} \) | \(a_{233}= +0.94199745 \pm 3.8 \cdot 10^{-8} \) | \(a_{234}= +0.20353838 \pm 4.1 \cdot 10^{-8} \) |
\(a_{235}= +0.35526705 \pm 6.0 \cdot 10^{-8} \) | \(a_{236}= +0.54270781 \pm 6.7 \cdot 10^{-8} \) | \(a_{237}= -0.12113060 \pm 4.4 \cdot 10^{-8} \) |
\(a_{238}= -0.16178749 \pm 1.3 \cdot 10^{-7} \) | \(a_{239}= +0.67720608 \pm 7.4 \cdot 10^{-8} \) | \(a_{240}= -0.27621749 \pm 3.5 \cdot 10^{-8} \) |
\(a_{241}= -0.20134566 \pm 5.4 \cdot 10^{-8} \) | \(a_{242}= -2.40434824 \pm 6.2 \cdot 10^{-8} \) | \(a_{243}= +0.73649516 \pm 4.6 \cdot 10^{-8} \) |
\(a_{244}= -0.46034309 \pm 3.5 \cdot 10^{-8} \) | \(a_{245}= +0.04887887 \pm 6.5 \cdot 10^{-8} \) | \(a_{246}= +1.33188247 \pm 6.1 \cdot 10^{-8} \) |
\(a_{247}= -0.53785694 \pm 2.8 \cdot 10^{-8} \) | \(a_{248}= -0.02001444 \pm 2.2 \cdot 10^{-8} \) | \(a_{249}= -0.68136432 \pm 3.5 \cdot 10^{-8} \) |
\(a_{250}= +0.90198373 \pm 5.1 \cdot 10^{-8} \) | \(a_{251}= -0.43846777 \pm 7.4 \cdot 10^{-8} \) | \(a_{252}= +0.14350032 \pm 1.0 \cdot 10^{-7} \) |
\(a_{253}= -0.24811227 \pm 3.9 \cdot 10^{-8} \) | \(a_{254}= +0.35427007 \pm 8.1 \cdot 10^{-8} \) | \(a_{255}= -0.08133811 \pm 3.2 \cdot 10^{-8} \) |
\(a_{256}= +1.07487151 \pm 7.1 \cdot 10^{-8} \) | \(a_{257}= +0.30829016 \pm 8.1 \cdot 10^{-8} \) | \(a_{258}= -0.11254415 \pm 4.1 \cdot 10^{-8} \) |
\(a_{259}= +0.26752047 \pm 6.3 \cdot 10^{-8} \) | \(a_{260}= +0.12078105 \pm 3.0 \cdot 10^{-8} \) | \(a_{261}= -0.71254520 \pm 4.2 \cdot 10^{-8} \) |
\(a_{262}= +1.17338888 \pm 5.1 \cdot 10^{-8} \) | \(a_{263}= -0.59222283 \pm 5.2 \cdot 10^{-8} \) | \(a_{264}= -0.07150676 \pm 3.6 \cdot 10^{-8} \) |
\(a_{265}= +0.24005373 \pm 3.2 \cdot 10^{-8} \) | \(a_{266}= -0.77414635 \pm 1.4 \cdot 10^{-7} \) | \(a_{267}= -0.14354476 \pm 4.2 \cdot 10^{-8} \) |
\(a_{268}= +0.19112165 \pm 6.0 \cdot 10^{-8} \) | \(a_{269}= -0.32039311 \pm 1.0 \cdot 10^{-7} \) | \(a_{270}= +0.51975152 \pm 3.8 \cdot 10^{-8} \) |
\(a_{271}= +1.11039372 \pm 7.4 \cdot 10^{-8} \) | \(a_{272}= +0.31743529 \pm 4.4 \cdot 10^{-8} \) | \(a_{273}= -0.10804791 \pm 1.1 \cdot 10^{-7} \) |
\(a_{274}= -0.67243160 \pm 4.4 \cdot 10^{-8} \) | \(a_{275}= +1.45545245 \pm 2.7 \cdot 10^{-8} \) | \(a_{276}= +0.11236817 \pm 3.8 \cdot 10^{-8} \) |
\(a_{277}= +0.15901720 \pm 4.3 \cdot 10^{-8} \) | \(a_{278}= -2.43168641 \pm 4.4 \cdot 10^{-8} \) | \(a_{279}= +0.14185831 \pm 2.3 \cdot 10^{-8} \) |
\(a_{280}= -0.00721474 \pm 1.1 \cdot 10^{-7} \) | \(a_{281}= -0.95368235 \pm 8.0 \cdot 10^{-8} \) | \(a_{282}= -1.13033310 \pm 4.6 \cdot 10^{-8} \) |
\(a_{283}= -1.18091239 \pm 6.3 \cdot 10^{-8} \) | \(a_{284}= +0.82541748 \pm 3.7 \cdot 10^{-8} \) | \(a_{285}= -0.38919946 \pm 1.8 \cdot 10^{-8} \) |
\(a_{286}= +0.84850663 \pm 2.9 \cdot 10^{-8} \) | \(a_{287}= +0.46243018 \pm 7.8 \cdot 10^{-8} \) | \(a_{288}= -0.55273454 \pm 3.6 \cdot 10^{-8} \) |
\(a_{289}= -0.90652443 \pm 5.4 \cdot 10^{-8} \) | \(a_{290}= -0.86320637 \pm 4.4 \cdot 10^{-8} \) | \(a_{291}= +1.50606013 \pm 7.5 \cdot 10^{-8} \) |
\(a_{292}= -0.75879312 \pm 5.7 \cdot 10^{-8} \) | \(a_{293}= +0.88887516 \pm 7.8 \cdot 10^{-8} \) | \(a_{294}= -0.15551514 \pm 1.3 \cdot 10^{-7} \) |
\(a_{295}= +0.19339500 \pm 3.6 \cdot 10^{-8} \) | \(a_{296}= -0.03948722 \pm 4.7 \cdot 10^{-8} \) | \(a_{297}= +1.78855574 \pm 3.3 \cdot 10^{-8} \) |
\(a_{298}= +0.12893476 \pm 1.1 \cdot 10^{-7} \) | \(a_{299}= +0.05533718 \pm 6.5 \cdot 10^{-8} \) | \(a_{300}= -0.65916341 \pm 3.4 \cdot 10^{-8} \) |
\(a_{301}= -0.03907538 \pm 5.1 \cdot 10^{-8} \) | \(a_{302}= +1.10256372 \pm 5.3 \cdot 10^{-8} \) | \(a_{303}= +1.15521998 \pm 4.8 \cdot 10^{-8} \) |
\(a_{304}= +1.51891459 \pm 4.1 \cdot 10^{-8} \) | \(a_{305}= -0.16404417 \pm 4.3 \cdot 10^{-8} \) | \(a_{306}= -0.16926057 \pm 3.6 \cdot 10^{-8} \) |
\(a_{307}= -1.13729178 \pm 6.5 \cdot 10^{-8} \) | \(a_{308}= +0.59822120 \pm 1.0 \cdot 10^{-7} \) | \(a_{309}= -0.99407348 \pm 6.0 \cdot 10^{-8} \) |
\(a_{310}= +0.17185295 \pm 4.3 \cdot 10^{-8} \) | \(a_{311}= +0.07770829 \pm 4.7 \cdot 10^{-8} \) | \(a_{312}= +0.01594836 \pm 1.5 \cdot 10^{-8} \) |
\(a_{313}= -0.03582827 \pm 8.3 \cdot 10^{-8} \) | \(a_{314}= +0.41368611 \pm 7.2 \cdot 10^{-8} \) | \(a_{315}= +0.05113662 \pm 1.1 \cdot 10^{-7} \) |
\(a_{316}= -0.14957812 \pm 3.4 \cdot 10^{-8} \) | \(a_{317}= +1.08946978 \pm 4.9 \cdot 10^{-8} \) | \(a_{318}= -0.76376541 \pm 3.4 \cdot 10^{-8} \) |
\(a_{319}= -2.97044386 \pm 4.5 \cdot 10^{-8} \) | \(a_{320}= -0.31436235 \pm 5.4 \cdot 10^{-8} \) | \(a_{321}= -1.30642190 \pm 4.0 \cdot 10^{-8} \) |
\(a_{322}= +0.07964771 \pm 1.5 \cdot 10^{-7} \) | \(a_{323}= +0.44727669 \pm 1.4 \cdot 10^{-8} \) | \(a_{324}= -0.43035721 \pm 3.4 \cdot 10^{-8} \) |
\(a_{325}= -0.32461367 \pm 4.0 \cdot 10^{-8} \) | \(a_{326}= +0.93861150 \pm 7.5 \cdot 10^{-8} \) | \(a_{327}= -0.40053556 \pm 6.3 \cdot 10^{-8} \) |
\(a_{328}= -0.06825676 \pm 4.9 \cdot 10^{-8} \) | \(a_{329}= -0.39245215 \pm 7.3 \cdot 10^{-8} \) | \(a_{330}= +0.61398916 \pm 2.9 \cdot 10^{-8} \) |
\(a_{331}= -0.20704531 \pm 9.2 \cdot 10^{-8} \) | \(a_{332}= -0.84138271 \pm 2.0 \cdot 10^{-8} \) | \(a_{333}= +0.27987744 \pm 5.1 \cdot 10^{-8} \) |
\(a_{334}= +1.29200258 \pm 5.0 \cdot 10^{-8} \) | \(a_{335}= +0.06810658 \pm 5.8 \cdot 10^{-8} \) | \(a_{336}= +0.30512863 \pm 1.2 \cdot 10^{-7} \) |
\(a_{337}= +0.25434627 \pm 6.8 \cdot 10^{-8} \) | \(a_{338}= +1.21080949 \pm 4.7 \cdot 10^{-8} \) | \(a_{339}= +0.25250734 \pm 5.4 \cdot 10^{-8} \) |
\(a_{340}= -0.10044037 \pm 3.2 \cdot 10^{-8} \) | \(a_{341}= +0.59137600 \pm 2.4 \cdot 10^{-8} \) | \(a_{342}= -0.80990476 \pm 4.1 \cdot 10^{-8} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.00576770 \pm 3.3 \cdot 10^{-8} \) | \(a_{345}= +0.04004262 \pm 3.2 \cdot 10^{-8} \) |
\(a_{346}= +0.07046190 \pm 5.2 \cdot 10^{-8} \) | \(a_{347}= +0.49442885 \pm 3.9 \cdot 10^{-8} \) | \(a_{348}= +1.34529156 \pm 2.4 \cdot 10^{-8} \) |
\(a_{349}= +1.29317398 \pm 6.8 \cdot 10^{-8} \) | \(a_{350}= -0.46722180 \pm 1.3 \cdot 10^{-7} \) | \(a_{351}= -0.39890663 \pm 4.3 \cdot 10^{-8} \) |
\(a_{352}= -2.30422842 \pm 3.8 \cdot 10^{-8} \) | \(a_{353}= -1.09082678 \pm 7.7 \cdot 10^{-8} \) | \(a_{354}= -0.61531394 \pm 8.9 \cdot 10^{-8} \) |
\(a_{355}= +0.29413915 \pm 4.2 \cdot 10^{-8} \) | \(a_{356}= -0.17725624 \pm 3.0 \cdot 10^{-8} \) | \(a_{357}= +0.08985161 \pm 1.0 \cdot 10^{-7} \) |
\(a_{358}= +1.03554465 \pm 5.1 \cdot 10^{-8} \) | \(a_{359}= -1.27130885 \pm 5.1 \cdot 10^{-8} \) | \(a_{360}= -0.00754799 \pm 4.5 \cdot 10^{-8} \) |
\(a_{361}= +1.14020026 \pm 5.8 \cdot 10^{-8} \) | \(a_{362}= -0.96408408 \pm 1.0 \cdot 10^{-7} \) | \(a_{363}= +1.33529836 \pm 4.4 \cdot 10^{-8} \) |
\(a_{364}= -0.13342296 \pm 1.1 \cdot 10^{-7} \) | \(a_{365}= -0.27039742 \pm 4.2 \cdot 10^{-8} \) | \(a_{366}= +0.52193006 \pm 4.5 \cdot 10^{-8} \) |
\(a_{367}= +1.09309058 \pm 6.1 \cdot 10^{-8} \) | \(a_{368}= -0.15627287 \pm 7.2 \cdot 10^{-8} \) | \(a_{369}= +0.48379018 \pm 4.4 \cdot 10^{-8} \) |
\(a_{370}= +0.33905497 \pm 3.8 \cdot 10^{-8} \) | \(a_{371}= -0.26517969 \pm 5.3 \cdot 10^{-8} \) | \(a_{372}= -0.26782972 \pm 3.5 \cdot 10^{-8} \) |
\(a_{373}= +0.04943254 \pm 8.1 \cdot 10^{-8} \) | \(a_{374}= -0.70561002 \pm 2.9 \cdot 10^{-8} \) | \(a_{375}= -0.50093301 \pm 3.9 \cdot 10^{-8} \) |
\(a_{376}= +0.05792769 \pm 5.3 \cdot 10^{-8} \) | \(a_{377}= +0.66250647 \pm 3.5 \cdot 10^{-8} \) | \(a_{378}= -0.57415289 \pm 1.4 \cdot 10^{-7} \) |
\(a_{379}= -0.49251068 \pm 8.7 \cdot 10^{-8} \) | \(a_{380}= -0.48060295 \pm 2.3 \cdot 10^{-8} \) | \(a_{381}= -0.19675031 \pm 4.8 \cdot 10^{-8} \) |
\(a_{382}= -2.06315172 \pm 3.7 \cdot 10^{-8} \) | \(a_{383}= -0.85792262 \pm 3.4 \cdot 10^{-8} \) | \(a_{384}= -0.08668848 \pm 3.2 \cdot 10^{-8} \) |
\(a_{385}= +0.21317730 \pm 1.1 \cdot 10^{-7} \) | \(a_{386}= -0.44523230 \pm 8.0 \cdot 10^{-8} \) | \(a_{387}= -0.04088030 \pm 3.3 \cdot 10^{-8} \) |
\(a_{388}= +1.85975831 \pm 6.2 \cdot 10^{-8} \) | \(a_{389}= +0.73672428 \pm 3.0 \cdot 10^{-8} \) | \(a_{390}= -0.13693973 \pm 5.2 \cdot 10^{-8} \) |
\(a_{391}= -0.04601787 \pm 5.0 \cdot 10^{-8} \) | \(a_{392}= +0.00796989 \pm 6.1 \cdot 10^{-8} \) | \(a_{393}= -0.65166278 \pm 4.2 \cdot 10^{-8} \) |
\(a_{394}= +1.87712050 \pm 5.1 \cdot 10^{-8} \) | \(a_{395}= -0.05330246 \pm 5.4 \cdot 10^{-8} \) | \(a_{396}= +0.62585349 \pm 3.1 \cdot 10^{-8} \) |
\(a_{397}= -0.35408239 \pm 5.5 \cdot 10^{-8} \) | \(a_{398}= -0.36941839 \pm 1.1 \cdot 10^{-7} \) | \(a_{399}= +0.42993620 \pm 1.1 \cdot 10^{-7} \) |
\(a_{400}= +0.91671298 \pm 5.3 \cdot 10^{-8} \) | \(a_{401}= -0.58345221 \pm 5.9 \cdot 10^{-8} \) | \(a_{402}= -0.21669085 \pm 7.6 \cdot 10^{-8} \) |
\(a_{403}= -0.13189626 \pm 3.8 \cdot 10^{-8} \) | \(a_{404}= +1.42652336 \pm 4.5 \cdot 10^{-8} \) | \(a_{405}= -0.15335864 \pm 5.2 \cdot 10^{-8} \) |
\(a_{406}= +0.95355648 \pm 1.3 \cdot 10^{-7} \) | \(a_{407}= +1.16674736 \pm 5.3 \cdot 10^{-8} \) | \(a_{408}= -0.01326250 \pm 1.8 \cdot 10^{-8} \) |
\(a_{409}= -1.14884316 \pm 5.6 \cdot 10^{-8} \) | \(a_{410}= +0.58608319 \pm 5.1 \cdot 10^{-8} \) | \(a_{411}= +0.37344707 \pm 3.3 \cdot 10^{-8} \) |
\(a_{412}= -1.22753162 \pm 6.0 \cdot 10^{-8} \) | \(a_{413}= -0.21363727 \pm 9.4 \cdot 10^{-8} \) | \(a_{414}= +0.08332670 \pm 4.9 \cdot 10^{-8} \) |
\(a_{415}= -0.29982839 \pm 4.7 \cdot 10^{-8} \) | \(a_{416}= +0.51391856 \pm 5.6 \cdot 10^{-8} \) | \(a_{417}= +1.35048112 \pm 4.8 \cdot 10^{-8} \) |
\(a_{418}= -3.37631439 \pm 4.7 \cdot 10^{-8} \) | \(a_{419}= -1.21081644 \pm 8.8 \cdot 10^{-8} \) | \(a_{420}= -0.09654639 \pm 1.6 \cdot 10^{-7} \) |
\(a_{421}= -0.38497343 \pm 6.4 \cdot 10^{-8} \) | \(a_{422}= +2.27744810 \pm 4.3 \cdot 10^{-8} \) | \(a_{423}= -0.41057981 \pm 4.5 \cdot 10^{-8} \) |
\(a_{424}= +0.03914171 \pm 3.6 \cdot 10^{-8} \) | \(a_{425}= +0.26994563 \pm 2.7 \cdot 10^{-8} \) | \(a_{426}= -0.93584592 \pm 4.6 \cdot 10^{-8} \) |
\(a_{427}= +0.18121435 \pm 7.0 \cdot 10^{-8} \) | \(a_{428}= -1.61323505 \pm 3.0 \cdot 10^{-8} \) | \(a_{429}= -0.47123353 \pm 1.5 \cdot 10^{-8} \) |
\(a_{430}= -0.04952406 \pm 4.7 \cdot 10^{-8} \) | \(a_{431}= -1.33943790 \pm 3.4 \cdot 10^{-8} \) | \(a_{432}= +1.12651723 \pm 6.0 \cdot 10^{-8} \) |
\(a_{433}= +0.56222675 \pm 5.3 \cdot 10^{-8} \) | \(a_{434}= -0.18984046 \pm 1.2 \cdot 10^{-7} \) | \(a_{435}= +0.47939730 \pm 2.1 \cdot 10^{-8} \) |
\(a_{436}= -0.49460133 \pm 6.3 \cdot 10^{-8} \) | \(a_{437}= -0.22019358 \pm 4.0 \cdot 10^{-8} \) | \(a_{438}= +0.86030822 \pm 7.8 \cdot 10^{-8} \) |
\(a_{439}= -0.86762275 \pm 9.5 \cdot 10^{-8} \) | \(a_{440}= -0.03146592 \pm 5.0 \cdot 10^{-8} \) | \(a_{441}= -0.05648899 \pm 5.9 \cdot 10^{-8} \) |
\(a_{442}= +0.15737419 \pm 5.7 \cdot 10^{-8} \) | \(a_{443}= +1.82967030 \pm 6.7 \cdot 10^{-8} \) | \(a_{444}= -0.52841106 \pm 3.1 \cdot 10^{-8} \) |
\(a_{445}= -0.06316561 \pm 5.5 \cdot 10^{-8} \) | \(a_{446}= +0.20209237 \pm 5.7 \cdot 10^{-8} \) | \(a_{447}= -0.07160625 \pm 7.2 \cdot 10^{-8} \) |
\(a_{448}= +0.34726604 \pm 6.4 \cdot 10^{-8} \) | \(a_{449}= +0.55679883 \pm 7.4 \cdot 10^{-8} \) | \(a_{450}= -0.48880313 \pm 2.7 \cdot 10^{-8} \) |
\(a_{451}= +2.01681460 \pm 4.3 \cdot 10^{-8} \) | \(a_{452}= +0.31180868 \pm 4.9 \cdot 10^{-8} \) | \(a_{453}= -0.61232874 \pm 3.7 \cdot 10^{-8} \) |
\(a_{454}= +2.54475709 \pm 4.1 \cdot 10^{-8} \) | \(a_{455}= -0.04754554 \pm 1.2 \cdot 10^{-7} \) | \(a_{456}= -0.06346051 \pm 2.0 \cdot 10^{-8} \) |
\(a_{457}= -0.51912557 \pm 7.3 \cdot 10^{-8} \) | \(a_{458}= +0.59236817 \pm 7.2 \cdot 10^{-8} \) | \(a_{459}= +0.33172695 \pm 2.8 \cdot 10^{-8} \) |
\(a_{460}= +0.04944663 \pm 2.0 \cdot 10^{-8} \) | \(a_{461}= -0.28292641 \pm 6.4 \cdot 10^{-8} \) | \(a_{462}= -0.67825419 \pm 1.8 \cdot 10^{-7} \) |
\(a_{463}= -1.33934988 \pm 5.3 \cdot 10^{-8} \) | \(a_{464}= -1.87092641 \pm 4.2 \cdot 10^{-8} \) | \(a_{465}= -0.09544165 \pm 3.7 \cdot 10^{-8} \) |
\(a_{466}= -1.31884759 \pm 4.9 \cdot 10^{-8} \) | \(a_{467}= +1.21683679 \pm 6.1 \cdot 10^{-8} \) | \(a_{468}= -0.13958587 \pm 1.6 \cdot 10^{-8} \) |
\(a_{469}= -0.07523516 \pm 8.7 \cdot 10^{-8} \) | \(a_{470}= -0.49739316 \pm 5.0 \cdot 10^{-8} \) | \(a_{471}= -0.22974808 \pm 3.7 \cdot 10^{-8} \) |
\(a_{472}= +0.03153382 \pm 3.6 \cdot 10^{-8} \) | \(a_{473}= -0.17042095 \pm 2.2 \cdot 10^{-8} \) | \(a_{474}= +0.16958942 \pm 5.8 \cdot 10^{-8} \) |
\(a_{475}= +1.29167852 \pm 2.7 \cdot 10^{-8} \) | \(a_{476}= +0.11095326 \pm 9.9 \cdot 10^{-8} \) | \(a_{477}= -0.27742854 \pm 4.0 \cdot 10^{-8} \) |
\(a_{478}= -0.94812530 \pm 9.0 \cdot 10^{-8} \) | \(a_{479}= -0.30319649 \pm 8.7 \cdot 10^{-8} \) | \(a_{480}= +0.37187738 \pm 4.5 \cdot 10^{-8} \) |
\(a_{481}= -0.26022295 \pm 2.5 \cdot 10^{-8} \) | \(a_{482}= +0.28189486 \pm 6.3 \cdot 10^{-8} \) | \(a_{483}= -0.04423380 \pm 1.3 \cdot 10^{-7} \) |
\(a_{484}= +1.64889315 \pm 3.9 \cdot 10^{-8} \) | \(a_{485}= +0.66272854 \pm 7.5 \cdot 10^{-8} \) | \(a_{486}= -1.03113323 \pm 5.2 \cdot 10^{-8} \) |
\(a_{487}= -0.60975971 \pm 6.9 \cdot 10^{-8} \) | \(a_{488}= -0.02674805 \pm 4.7 \cdot 10^{-8} \) | \(a_{489}= -0.52127491 \pm 5.9 \cdot 10^{-8} \) |
\(a_{490}= -0.06843307 \pm 1.4 \cdot 10^{-7} \) | \(a_{491}= +0.62603544 \pm 6.6 \cdot 10^{-8} \) | \(a_{492}= -0.91340008 \pm 3.7 \cdot 10^{-8} \) |
\(a_{493}= -0.55093406 \pm 2.8 \cdot 10^{-8} \) | \(a_{494}= +0.75302892 \pm 3.2 \cdot 10^{-8} \) | \(a_{495}= +0.22302413 \pm 4.2 \cdot 10^{-8} \) |
\(a_{496}= +0.37247665 \pm 4.4 \cdot 10^{-8} \) | \(a_{497}= -0.32492611 \pm 5.5 \cdot 10^{-8} \) | \(a_{498}= +0.95394705 \pm 3.6 \cdot 10^{-8} \) |
\(a_{499}= +0.20685022 \pm 4.7 \cdot 10^{-8} \) | \(a_{500}= -0.61857711 \pm 2.9 \cdot 10^{-8} \) | \(a_{501}= -0.71753704 \pm 2.6 \cdot 10^{-8} \) |
\(a_{502}= +0.61387869 \pm 7.9 \cdot 10^{-8} \) | \(a_{503}= -0.62668655 \pm 4.3 \cdot 10^{-8} \) | \(a_{504}= +0.00833803 \pm 1.0 \cdot 10^{-7} \) |
\(a_{505}= +0.50834441 \pm 4.0 \cdot 10^{-8} \) | \(a_{506}= +0.34737065 \pm 3.9 \cdot 10^{-8} \) | \(a_{507}= -0.67244499 \pm 3.6 \cdot 10^{-8} \) |
\(a_{508}= -0.24295711 \pm 5.1 \cdot 10^{-8} \) | \(a_{509}= +1.38673423 \pm 3.1 \cdot 10^{-8} \) | \(a_{510}= +0.11387778 \pm 4.3 \cdot 10^{-8} \) |
\(a_{511}= +0.29869939 \pm 8.4 \cdot 10^{-8} \) | \(a_{512}= -1.39338859 \pm 7.0 \cdot 10^{-8} \) | \(a_{513}= +1.58729956 \pm 3.7 \cdot 10^{-8} \) |
\(a_{514}= -0.43162297 \pm 8.9 \cdot 10^{-8} \) | \(a_{515}= -0.43743331 \pm 4.2 \cdot 10^{-8} \) | \(a_{516}= +0.07718236 \pm 2.8 \cdot 10^{-8} \) |
\(a_{517}= -1.71161672 \pm 4.8 \cdot 10^{-8} \) | \(a_{518}= -0.37454319 \pm 1.4 \cdot 10^{-7} \) | \(a_{519}= -0.03913229 \pm 5.0 \cdot 10^{-8} \) |
\(a_{520}= +0.00701793 \pm 3.1 \cdot 10^{-8} \) | \(a_{521}= +1.79768957 \pm 6.6 \cdot 10^{-8} \) | \(a_{522}= +0.99760198 \pm 3.7 \cdot 10^{-8} \) |
\(a_{523}= +1.26103235 \pm 6.2 \cdot 10^{-8} \) | \(a_{524}= -0.80470576 \pm 3.5 \cdot 10^{-8} \) | \(a_{525}= +0.25948009 \pm 1.1 \cdot 10^{-7} \) |
\(a_{526}= +0.82914412 \pm 6.2 \cdot 10^{-8} \) | \(a_{527}= +0.10968367 \pm 3.0 \cdot 10^{-8} \) | \(a_{528}= +1.33076929 \pm 1.9 \cdot 10^{-8} \) |
\(a_{529}= -0.97734548 \pm 4.6 \cdot 10^{-8} \) | \(a_{530}= -0.33608827 \pm 2.9 \cdot 10^{-8} \) | \(a_{531}= -0.22350534 \pm 4.0 \cdot 10^{-8} \) |
\(a_{532}= +0.53090671 \pm 1.1 \cdot 10^{-7} \) | \(a_{533}= -0.44981585 \pm 5.6 \cdot 10^{-8} \) | \(a_{534}= +0.20097046 \pm 4.3 \cdot 10^{-8} \) |
\(a_{535}= -0.57487949 \pm 5.4 \cdot 10^{-8} \) | \(a_{536}= +0.01110505 \pm 5.4 \cdot 10^{-8} \) | \(a_{537}= -0.57510848 \pm 4.8 \cdot 10^{-8} \) |
\(a_{538}= +0.44856775 \pm 1.3 \cdot 10^{-7} \) | \(a_{539}= -0.23549015 \pm 5.7 \cdot 10^{-8} \) | \(a_{540}= -0.35644368 \pm 2.5 \cdot 10^{-8} \) |
\(a_{541}= -1.14365229 \pm 6.2 \cdot 10^{-8} \) | \(a_{542}= -1.55461151 \pm 6.6 \cdot 10^{-8} \) | \(a_{543}= +0.53542156 \pm 6.5 \cdot 10^{-8} \) |
\(a_{544}= -0.42736977 \pm 3.5 \cdot 10^{-8} \) | \(a_{545}= -0.17625216 \pm 8.2 \cdot 10^{-8} \) | \(a_{546}= +0.15127295 \pm 1.9 \cdot 10^{-7} \) |
\(a_{547}= -0.11274897 \pm 4.4 \cdot 10^{-8} \) | \(a_{548}= +0.46115111 \pm 2.5 \cdot 10^{-8} \) | \(a_{549}= +0.18958478 \pm 4.8 \cdot 10^{-8} \) |
\(a_{550}= -2.03771248 \pm 3.0 \cdot 10^{-8} \) | \(a_{551}= -2.63619641 \pm 5.8 \cdot 10^{-8} \) | \(a_{552}= +0.00652911 \pm 3.3 \cdot 10^{-8} \) |
\(a_{553}= +0.05888152 \pm 5.5 \cdot 10^{-8} \) | \(a_{554}= -0.22263271 \pm 4.6 \cdot 10^{-8} \) | \(a_{555}= -0.18830032 \pm 3.9 \cdot 10^{-8} \) |
\(a_{556}= +1.66764157 \pm 3.1 \cdot 10^{-8} \) | \(a_{557}= +1.80061329 \pm 6.8 \cdot 10^{-8} \) | \(a_{558}= -0.19860933 \pm 2.4 \cdot 10^{-8} \) |
\(a_{559}= +0.03800947 \pm 5.0 \cdot 10^{-8} \) | \(a_{560}= +0.13426918 \pm 1.3 \cdot 10^{-7} \) | \(a_{561}= +0.39187331 \pm 1.6 \cdot 10^{-8} \) |
\(a_{562}= +1.33520708 \pm 1.0 \cdot 10^{-7} \) | \(a_{563}= -0.70550547 \pm 9.5 \cdot 10^{-8} \) | \(a_{564}= +0.77517827 \pm 3.0 \cdot 10^{-8} \) |
\(a_{565}= +0.11111364 \pm 6.3 \cdot 10^{-8} \) | \(a_{566}= +1.65334148 \pm 6.1 \cdot 10^{-8} \) | \(a_{567}= +0.16941039 \pm 6.1 \cdot 10^{-8} \) |
\(a_{568}= +0.04796055 \pm 3.7 \cdot 10^{-8} \) | \(a_{569}= -0.44782881 \pm 4.5 \cdot 10^{-8} \) | \(a_{570}= +0.54490039 \pm 1.6 \cdot 10^{-8} \) |
\(a_{571}= +0.26037999 \pm 6.8 \cdot 10^{-8} \) | \(a_{572}= -0.58190272 \pm 1.8 \cdot 10^{-8} \) | \(a_{573}= +1.14580869 \pm 2.9 \cdot 10^{-8} \) |
\(a_{574}= -0.64742736 \pm 1.5 \cdot 10^{-7} \) | \(a_{575}= -0.13289379 \pm 5.7 \cdot 10^{-8} \) | \(a_{576}= +0.36330652 \pm 4.4 \cdot 10^{-8} \) |
\(a_{577}= +0.72498508 \pm 4.7 \cdot 10^{-8} \) | \(a_{578}= +1.26918344 \pm 5.9 \cdot 10^{-8} \) | \(a_{579}= +0.24726783 \pm 5.7 \cdot 10^{-8} \) |
\(a_{580}= +0.59198375 \pm 2.5 \cdot 10^{-8} \) | \(a_{581}= +0.33121083 \pm 5.3 \cdot 10^{-8} \) | \(a_{582}= -2.10856598 \pm 8.8 \cdot 10^{-8} \) |
\(a_{583}= -1.15653841 \pm 3.1 \cdot 10^{-8} \) | \(a_{584}= -0.04408937 \pm 3.5 \cdot 10^{-8} \) | \(a_{585}= -0.04974170 \pm 3.1 \cdot 10^{-8} \) |
\(a_{586}= -1.24447350 \pm 9.6 \cdot 10^{-8} \) | \(a_{587}= +0.16923465 \pm 6.0 \cdot 10^{-8} \) | \(a_{588}= +0.10665171 \pm 1.0 \cdot 10^{-7} \) |
\(a_{589}= +0.52483177 \pm 2.2 \cdot 10^{-8} \) | \(a_{590}= -0.27076350 \pm 4.3 \cdot 10^{-8} \) | \(a_{591}= -1.04249288 \pm 3.5 \cdot 10^{-8} \) |
\(a_{592}= +0.73487282 \pm 3.8 \cdot 10^{-8} \) | \(a_{593}= -0.37579202 \pm 8.9 \cdot 10^{-8} \) | \(a_{594}= -2.50407519 \pm 3.5 \cdot 10^{-8} \) |
\(a_{595}= +0.03953841 \pm 1.0 \cdot 10^{-7} \) | \(a_{596}= -0.08842298 \pm 7.0 \cdot 10^{-8} \) | \(a_{597}= +0.20516320 \pm 7.5 \cdot 10^{-8} \) |
\(a_{598}= -0.07747506 \pm 7.6 \cdot 10^{-8} \) | \(a_{599}= +0.84745305 \pm 8.0 \cdot 10^{-8} \) | \(a_{600}= -0.03830042 \pm 3.3 \cdot 10^{-8} \) |
\(a_{601}= +1.82969025 \pm 7.8 \cdot 10^{-8} \) | \(a_{602}= +0.05470765 \pm 1.2 \cdot 10^{-7} \) | \(a_{603}= -0.07871033 \pm 4.9 \cdot 10^{-8} \) |
\(a_{604}= -0.75613413 \pm 2.4 \cdot 10^{-8} \) | \(a_{605}= +0.58758633 \pm 3.3 \cdot 10^{-8} \) | \(a_{606}= -1.61737072 \pm 5.7 \cdot 10^{-8} \) |
\(a_{607}= +1.43356274 \pm 7.3 \cdot 10^{-8} \) | \(a_{608}= -2.04494647 \pm 4.2 \cdot 10^{-8} \) | \(a_{609}= -0.52957487 \pm 1.1 \cdot 10^{-7} \) |
\(a_{610}= +0.22967074 \pm 4.3 \cdot 10^{-8} \) | \(a_{611}= +0.38174670 \pm 4.1 \cdot 10^{-8} \) | \(a_{612}= +0.11607828 \pm 1.9 \cdot 10^{-8} \) |
\(a_{613}= -1.31601412 \pm 6.1 \cdot 10^{-8} \) | \(a_{614}= +1.59227026 \pm 6.9 \cdot 10^{-8} \) | \(a_{615}= -0.32549192 \pm 3.3 \cdot 10^{-8} \) |
\(a_{616}= +0.03475940 \pm 1.0 \cdot 10^{-7} \) | \(a_{617}= -1.06961950 \pm 4.8 \cdot 10^{-8} \) | \(a_{618}= +1.39175687 \pm 7.8 \cdot 10^{-8} \) |
\(a_{619}= +0.41321095 \pm 5.5 \cdot 10^{-8} \) | \(a_{620}= -0.11785612 \pm 3.3 \cdot 10^{-8} \) | \(a_{621}= -0.16330863 \pm 6.0 \cdot 10^{-8} \) |
\(a_{622}= -0.10879582 \pm 5.1 \cdot 10^{-8} \) | \(a_{623}= +0.06977703 \pm 5.8 \cdot 10^{-8} \) | \(a_{624}= -0.29680523 \pm 4.7 \cdot 10^{-8} \) |
\(a_{625}= +0.66250077 \pm 5.9 \cdot 10^{-8} \) | \(a_{626}= +0.05016152 \pm 1.0 \cdot 10^{-7} \) | \(a_{627}= +1.87509738 \pm 2.4 \cdot 10^{-8} \) |
\(a_{628}= -0.28370441 \pm 4.0 \cdot 10^{-8} \) | \(a_{629}= +0.21639892 \pm 2.1 \cdot 10^{-8} \) | \(a_{630}= -0.07159405 \pm 1.9 \cdot 10^{-7} \) |
\(a_{631}= +0.93339703 \pm 7.4 \cdot 10^{-8} \) | \(a_{632}= -0.00869118 \pm 3.1 \cdot 10^{-8} \) | \(a_{633}= -1.26482208 \pm 3.7 \cdot 10^{-8} \) |
\(a_{634}= -1.52531687 \pm 5.8 \cdot 10^{-8} \) | \(a_{635}= -0.08657825 \pm 5.0 \cdot 10^{-8} \) | \(a_{636}= +0.52378750 \pm 2.5 \cdot 10^{-8} \) |
\(a_{637}= +0.05252203 \pm 6.7 \cdot 10^{-8} \) | \(a_{638}= +4.15878274 \pm 4.1 \cdot 10^{-8} \) | \(a_{639}= -0.33993470 \pm 3.2 \cdot 10^{-8} \) |
\(a_{640}= -0.03814651 \pm 3.5 \cdot 10^{-8} \) | \(a_{641}= -1.80642001 \pm 7.6 \cdot 10^{-8} \) | \(a_{642}= +1.82906162 \pm 4.4 \cdot 10^{-8} \) |
\(a_{643}= -1.13991259 \pm 5.6 \cdot 10^{-8} \) | \(a_{644}= -0.05462211 \pm 1.2 \cdot 10^{-7} \) | \(a_{645}= +0.02750409 \pm 4.0 \cdot 10^{-8} \) |
\(a_{646}= -0.62621167 \pm 2.0 \cdot 10^{-8} \) | \(a_{647}= -1.77532402 \pm 6.8 \cdot 10^{-8} \) | \(a_{648}= -0.02500573 \pm 4.3 \cdot 10^{-8} \) |
\(a_{649}= -0.93174448 \pm 4.1 \cdot 10^{-8} \) | \(a_{650}= +0.45447676 \pm 5.2 \cdot 10^{-8} \) | \(a_{651}= +0.10543134 \pm 1.0 \cdot 10^{-7} \) |
\(a_{652}= -0.64369631 \pm 4.8 \cdot 10^{-8} \) | \(a_{653}= -0.57101122 \pm 9.8 \cdot 10^{-8} \) | \(a_{654}= +0.56077154 \pm 8.2 \cdot 10^{-8} \) |
\(a_{655}= -0.28675849 \pm 4.6 \cdot 10^{-8} \) | \(a_{656}= +1.27028548 \pm 7.0 \cdot 10^{-8} \) | \(a_{657}= +0.31249654 \pm 3.8 \cdot 10^{-8} \) |
\(a_{658}= +0.54945432 \pm 1.5 \cdot 10^{-7} \) | \(a_{659}= +0.13416538 \pm 7.4 \cdot 10^{-8} \) | \(a_{660}= -0.42107150 \pm 2.6 \cdot 10^{-8} \) |
\(a_{661}= +1.03518043 \pm 4.3 \cdot 10^{-8} \) | \(a_{662}= +0.28987469 \pm 1.1 \cdot 10^{-7} \) | \(a_{663}= -0.08740061 \pm 3.3 \cdot 10^{-8} \) |
\(a_{664}= -0.04888820 \pm 4.0 \cdot 10^{-8} \) | \(a_{665}= +0.18918965 \pm 1.1 \cdot 10^{-7} \) | \(a_{666}= -0.39184362 \pm 3.8 \cdot 10^{-8} \) |
\(a_{667}= +0.27122393 \pm 4.4 \cdot 10^{-8} \) | \(a_{668}= -0.88605060 \pm 3.0 \cdot 10^{-8} \) | \(a_{669}= -0.11223566 \pm 3.5 \cdot 10^{-8} \) |
\(a_{670}= -0.09535291 \pm 6.7 \cdot 10^{-8} \) | \(a_{671}= +0.79033713 \pm 3.2 \cdot 10^{-8} \) | \(a_{672}= -0.41080106 \pm 1.2 \cdot 10^{-7} \) |
\(a_{673}= -0.79699126 \pm 6.9 \cdot 10^{-8} \) | \(a_{674}= -0.35609860 \pm 7.9 \cdot 10^{-8} \) | \(a_{675}= +0.95798547 \pm 5.0 \cdot 10^{-8} \) |
\(a_{676}= -0.83036868 \pm 2.7 \cdot 10^{-8} \) | \(a_{677}= +0.56503818 \pm 8.3 \cdot 10^{-8} \) | \(a_{678}= -0.35352399 \pm 6.8 \cdot 10^{-8} \) |
\(a_{679}= -0.73209503 \pm 1.0 \cdot 10^{-7} \) | \(a_{680}= -0.00583605 \pm 2.9 \cdot 10^{-8} \) | \(a_{681}= -1.41327697 \pm 3.5 \cdot 10^{-8} \) |
\(a_{682}= -0.82795852 \pm 2.7 \cdot 10^{-8} \) | \(a_{683}= +1.03680022 \pm 7.0 \cdot 10^{-8} \) | \(a_{684}= +0.55542970 \pm 2.2 \cdot 10^{-8} \) |
\(a_{685}= +0.16433211 \pm 5.0 \cdot 10^{-8} \) | \(a_{686}= +0.07559583 \pm 8.7 \cdot 10^{-8} \) | \(a_{687}= -0.32898240 \pm 5.8 \cdot 10^{-8} \) |
\(a_{688}= -0.10733920 \pm 4.1 \cdot 10^{-8} \) | \(a_{689}= +0.25794602 \pm 4.2 \cdot 10^{-8} \) | \(a_{690}= -0.05606184 \pm 2.7 \cdot 10^{-8} \) |
\(a_{691}= -0.83044018 \pm 4.4 \cdot 10^{-8} \) | \(a_{692}= -0.04832251 \pm 3.1 \cdot 10^{-8} \) | \(a_{693}= -0.24636762 \pm 1.0 \cdot 10^{-7} \) |
\(a_{694}= -0.69222724 \pm 4.1 \cdot 10^{-8} \) | \(a_{695}= +0.59426736 \pm 3.4 \cdot 10^{-8} \) | \(a_{696}= +0.07816762 \pm 1.8 \cdot 10^{-8} \) |
\(a_{697}= +0.37406257 \pm 4.0 \cdot 10^{-8} \) | \(a_{698}= -1.81051382 \pm 7.5 \cdot 10^{-8} \) | \(a_{699}= +0.73244591 \pm 3.5 \cdot 10^{-8} \) |
\(a_{700}= +0.32041899 \pm 1.0 \cdot 10^{-7} \) | \(a_{701}= -0.25474896 \pm 3.9 \cdot 10^{-8} \) | \(a_{702}= +0.55849095 \pm 5.8 \cdot 10^{-8} \) |
\(a_{703}= +1.03545980 \pm 5.1 \cdot 10^{-8} \) | \(a_{704}= +1.51454481 \pm 4.3 \cdot 10^{-8} \) | \(a_{705}= +0.27623631 \pm 4.1 \cdot 10^{-8} \) |
\(a_{706}= +1.52721673 \pm 9.3 \cdot 10^{-8} \) | \(a_{707}= -0.56155182 \pm 6.7 \cdot 10^{-8} \) | \(a_{708}= +0.42198003 \pm 5.6 \cdot 10^{-8} \) |
\(a_{709}= +1.55929832 \pm 7.0 \cdot 10^{-8} \) | \(a_{710}= -0.41181078 \pm 4.9 \cdot 10^{-8} \) | \(a_{711}= +0.06160130 \pm 3.1 \cdot 10^{-8} \) |
\(a_{712}= -0.01029940 \pm 4.3 \cdot 10^{-8} \) | \(a_{713}= -0.05399709 \pm 3.9 \cdot 10^{-8} \) | \(a_{714}= -0.12579714 \pm 1.8 \cdot 10^{-7} \) |
\(a_{715}= -0.20736218 \pm 2.2 \cdot 10^{-8} \) | \(a_{716}= -0.71017270 \pm 3.3 \cdot 10^{-8} \) | \(a_{717}= +0.52655856 \pm 5.1 \cdot 10^{-8} \) |
\(a_{718}= +1.77990145 \pm 5.6 \cdot 10^{-8} \) | \(a_{719}= +1.19182586 \pm 4.4 \cdot 10^{-8} \) | \(a_{720}= +0.14047117 \pm 3.1 \cdot 10^{-8} \) |
\(a_{721}= +0.48321859 \pm 8.4 \cdot 10^{-8} \) | \(a_{722}= -1.59634229 \pm 6.3 \cdot 10^{-8} \) | \(a_{723}= -0.15655542 \pm 3.4 \cdot 10^{-8} \) |
\(a_{724}= +0.66116530 \pm 6.4 \cdot 10^{-8} \) | \(a_{725}= -1.59102788 \pm 2.9 \cdot 10^{-8} \) | \(a_{726}= -1.86949024 \pm 5.1 \cdot 10^{-8} \) |
\(a_{727}= -1.28387768 \pm 3.6 \cdot 10^{-8} \) | \(a_{728}= -0.00775249 \pm 1.1 \cdot 10^{-7} \) | \(a_{729}= +1.02087628 \pm 6.1 \cdot 10^{-8} \) |
\(a_{730}= +0.37857108 \pm 5.1 \cdot 10^{-8} \) | \(a_{731}= -0.03160831 \pm 4.3 \cdot 10^{-8} \) | \(a_{732}= -0.35793771 \pm 3.0 \cdot 10^{-8} \) |
\(a_{733}= -1.01346210 \pm 6.0 \cdot 10^{-8} \) | \(a_{734}= -1.53038619 \pm 7.1 \cdot 10^{-8} \) | \(a_{735}= +0.03800555 \pm 1.1 \cdot 10^{-7} \) |
\(a_{736}= +0.21039343 \pm 7.1 \cdot 10^{-8} \) | \(a_{737}= -0.32812600 \pm 5.0 \cdot 10^{-8} \) | \(a_{738}= -0.67733253 \pm 4.6 \cdot 10^{-8} \) |
\(a_{739}= +0.87246453 \pm 5.9 \cdot 10^{-8} \) | \(a_{740}= -0.23252265 \pm 2.3 \cdot 10^{-8} \) | \(a_{741}= -0.41820826 \pm 1.6 \cdot 10^{-8} \) |
\(a_{742}= +0.37126596 \pm 1.3 \cdot 10^{-7} \) | \(a_{743}= -1.44437916 \pm 7.8 \cdot 10^{-8} \) | \(a_{744}= -0.01556214 \pm 2.2 \cdot 10^{-8} \) |
\(a_{745}= -0.03150970 \pm 4.9 \cdot 10^{-8} \) | \(a_{746}= -0.06920825 \pm 1.0 \cdot 10^{-7} \) | \(a_{747}= +0.34650972 \pm 3.8 \cdot 10^{-8} \) |
\(a_{748}= +0.48390475 \pm 2.9 \cdot 10^{-8} \) | \(a_{749}= +0.63505099 \pm 5.7 \cdot 10^{-8} \) | \(a_{750}= +0.70133342 \pm 3.6 \cdot 10^{-8} \) |
\(a_{751}= -0.21329159 \pm 4.3 \cdot 10^{-8} \) | \(a_{752}= -1.07805738 \pm 5.4 \cdot 10^{-8} \) | \(a_{753}= -0.34092866 \pm 4.8 \cdot 10^{-8} \) |
\(a_{754}= -0.92754504 \pm 4.0 \cdot 10^{-8} \) | \(a_{755}= -0.26944989 \pm 6.1 \cdot 10^{-8} \) | \(a_{756}= +0.39375193 \pm 1.1 \cdot 10^{-7} \) |
\(a_{757}= +0.73081720 \pm 4.7 \cdot 10^{-8} \) | \(a_{758}= +0.68954170 \pm 1.0 \cdot 10^{-7} \) | \(a_{759}= -0.19291858 \pm 4.1 \cdot 10^{-8} \) |
\(a_{760}= -0.02792524 \pm 5.9 \cdot 10^{-8} \) | \(a_{761}= -0.04074780 \pm 6.4 \cdot 10^{-8} \) | \(a_{762}= +0.27546111 \pm 6.4 \cdot 10^{-8} \) |
\(a_{763}= +0.19470012 \pm 1.0 \cdot 10^{-7} \) | \(a_{764}= +1.41490183 \pm 3.2 \cdot 10^{-8} \) | \(a_{765}= +0.04136472 \pm 2.6 \cdot 10^{-8} \) |
\(a_{766}= +1.20113827 \pm 2.8 \cdot 10^{-8} \) | \(a_{767}= +0.20780960 \pm 6.8 \cdot 10^{-8} \) | \(a_{768}= +0.83576155 \pm 6.0 \cdot 10^{-8} \) |
\(a_{769}= +0.16276499 \pm 6.7 \cdot 10^{-8} \) | \(a_{770}= -0.29845980 \pm 1.8 \cdot 10^{-7} \) | \(a_{771}= +0.23970964 \pm 4.8 \cdot 10^{-8} \) |
\(a_{772}= +0.30533867 \pm 4.2 \cdot 10^{-8} \) | \(a_{773}= +0.69599753 \pm 7.4 \cdot 10^{-8} \) | \(a_{774}= +0.05723464 \pm 3.4 \cdot 10^{-8} \) |
\(a_{775}= +0.31675256 \pm 3.5 \cdot 10^{-8} \) | \(a_{776}= +0.10806050 \pm 6.7 \cdot 10^{-8} \) | \(a_{777}= +0.20800935 \pm 1.1 \cdot 10^{-7} \) |
\(a_{778}= -1.03145400 \pm 3.3 \cdot 10^{-8} \) | \(a_{779}= +1.78987373 \pm 5.5 \cdot 10^{-8} \) | \(a_{780}= +0.09391276 \pm 3.3 \cdot 10^{-8} \) |
\(a_{781}= -1.41711281 \pm 3.5 \cdot 10^{-8} \) | \(a_{782}= +0.06442752 \pm 5.5 \cdot 10^{-8} \) | \(a_{783}= -1.95515975 \pm 3.6 \cdot 10^{-8} \) |
\(a_{784}= -0.14832287 \pm 7.5 \cdot 10^{-8} \) | \(a_{785}= -0.10109863 \pm 7.1 \cdot 10^{-8} \) | \(a_{786}= +0.91236328 \pm 4.1 \cdot 10^{-8} \) |
\(a_{787}= -1.06855170 \pm 6.9 \cdot 10^{-8} \) | \(a_{788}= -1.28732231 \pm 2.9 \cdot 10^{-8} \) | \(a_{789}= -0.46048021 \pm 4.4 \cdot 10^{-8} \) |
\(a_{790}= +0.07462633 \pm 6.6 \cdot 10^{-8} \) | \(a_{791}= -0.12274368 \pm 7.2 \cdot 10^{-8} \) | \(a_{792}= +0.03636496 \pm 4.9 \cdot 10^{-8} \) |
\(a_{793}= -0.17627112 \pm 6.8 \cdot 10^{-8} \) | \(a_{794}= +0.49573458 \pm 5.9 \cdot 10^{-8} \) | \(a_{795}= +0.18665271 \pm 3.1 \cdot 10^{-8} \) |
\(a_{796}= +0.25334577 \pm 6.7 \cdot 10^{-8} \) | \(a_{797}= +0.59287552 \pm 6.2 \cdot 10^{-8} \) | \(a_{798}= -0.60193404 \pm 1.9 \cdot 10^{-7} \) |
\(a_{799}= -0.31745692 \pm 3.0 \cdot 10^{-8} \) | \(a_{800}= -1.23418985 \pm 5.8 \cdot 10^{-8} \) | \(a_{801}= +0.07300008 \pm 3.6 \cdot 10^{-8} \) |
\(a_{802}= +0.81686479 \pm 5.8 \cdot 10^{-8} \) | \(a_{803}= +1.30272919 \pm 3.7 \cdot 10^{-8} \) | \(a_{804}= +0.14860578 \pm 5.0 \cdot 10^{-8} \) |
\(a_{805}= -0.01946470 \pm 1.3 \cdot 10^{-7} \) | \(a_{806}= +0.18466193 \pm 5.0 \cdot 10^{-8} \) | \(a_{807}= -0.24912023 \pm 8.2 \cdot 10^{-8} \) |
\(a_{808}= +0.08288756 \pm 4.1 \cdot 10^{-8} \) | \(a_{809}= +1.18625658 \pm 5.8 \cdot 10^{-8} \) | \(a_{810}= +0.21471043 \pm 5.7 \cdot 10^{-8} \) |
\(a_{811}= -0.80415915 \pm 6.3 \cdot 10^{-8} \) | \(a_{812}= -0.65394552 \pm 1.0 \cdot 10^{-7} \) | \(a_{813}= +0.86338168 \pm 2.7 \cdot 10^{-8} \) |
\(a_{814}= -1.63350967 \pm 3.9 \cdot 10^{-8} \) | \(a_{815}= -0.22938245 \pm 4.6 \cdot 10^{-8} \) | \(a_{816}= +0.24682039 \pm 3.1 \cdot 10^{-8} \) |
\(a_{817}= -0.15124444 \pm 1 \cdot 10^{-8} \) | \(a_{818}= +1.60844282 \pm 5.5 \cdot 10^{-8} \) | \(a_{819}= +0.05494807 \pm 1.1 \cdot 10^{-7} \) |
\(a_{820}= -0.40193369 \pm 3.1 \cdot 10^{-8} \) | \(a_{821}= -1.44137819 \pm 4.5 \cdot 10^{-8} \) | \(a_{822}= -0.52284619 \pm 4.0 \cdot 10^{-8} \) |
\(a_{823}= -0.56644907 \pm 4.5 \cdot 10^{-8} \) | \(a_{824}= -0.07132523 \pm 3.7 \cdot 10^{-8} \) | \(a_{825}= +1.13168055 \pm 2.8 \cdot 10^{-8} \) |
\(a_{826}= +0.29910378 \pm 1.7 \cdot 10^{-7} \) | \(a_{827}= -0.61634014 \pm 5.5 \cdot 10^{-8} \) | \(a_{828}= -0.05714514 \pm 2.4 \cdot 10^{-8} \) |
\(a_{829}= -1.81453346 \pm 6.7 \cdot 10^{-8} \) | \(a_{830}= +0.41977603 \pm 4.7 \cdot 10^{-8} \) | \(a_{831}= +0.12364311 \pm 4.7 \cdot 10^{-8} \) |
\(a_{832}= -0.33779320 \pm 4.2 \cdot 10^{-8} \) | \(a_{833}= -0.04367682 \pm 5.3 \cdot 10^{-8} \) | \(a_{834}= -1.89074691 \pm 4.3 \cdot 10^{-8} \) |
\(a_{835}= -0.31574588 \pm 5.2 \cdot 10^{-8} \) | \(a_{836}= +2.31546396 \pm 3.1 \cdot 10^{-8} \) | \(a_{837}= +0.38924639 \pm 4.0 \cdot 10^{-8} \) |
\(a_{838}= +1.69520878 \pm 1.1 \cdot 10^{-7} \) | \(a_{839}= +0.32149984 \pm 5.8 \cdot 10^{-8} \) | \(a_{840}= -0.00560979 \pm 1.6 \cdot 10^{-7} \) |
\(a_{841}= +2.24714077 \pm 4.5 \cdot 10^{-8} \) | \(a_{842}= +0.53898372 \pm 7.8 \cdot 10^{-8} \) | \(a_{843}= -0.74153145 \pm 6.6 \cdot 10^{-8} \) |
\(a_{844}= -1.56186551 \pm 2.4 \cdot 10^{-8} \) | \(a_{845}= -0.29590352 \pm 4.7 \cdot 10^{-8} \) | \(a_{846}= +0.57483404 \pm 4.1 \cdot 10^{-8} \) |
\(a_{847}= -0.64908783 \pm 6.0 \cdot 10^{-8} \) | \(a_{848}= -0.72844274 \pm 4.0 \cdot 10^{-8} \) | \(a_{849}= -0.91821315 \pm 4.0 \cdot 10^{-8} \) |
\(a_{850}= -0.37793854 \pm 3.4 \cdot 10^{-8} \) | \(a_{851}= -0.10653283 \pm 4.8 \cdot 10^{-8} \) | \(a_{852}= +0.64179968 \pm 3.7 \cdot 10^{-8} \) |
\(a_{853}= +1.68007177 \pm 6.0 \cdot 10^{-8} \) | \(a_{854}= -0.25370993 \pm 1.4 \cdot 10^{-7} \) | \(a_{855}= +0.19792847 \pm 5.0 \cdot 10^{-8} \) |
\(a_{856}= -0.09373637 \pm 4.2 \cdot 10^{-8} \) | \(a_{857}= +0.67269749 \pm 3.4 \cdot 10^{-8} \) | \(a_{858}= +0.65975254 \pm 2.0 \cdot 10^{-8} \) |
\(a_{859}= -0.51584667 \pm 9.1 \cdot 10^{-8} \) | \(a_{860}= +0.03396342 \pm 2.9 \cdot 10^{-8} \) | \(a_{861}= +0.35956052 \pm 1.2 \cdot 10^{-7} \) |
\(a_{862}= +1.87528581 \pm 3.0 \cdot 10^{-8} \) | \(a_{863}= +1.30604282 \pm 6.4 \cdot 10^{-8} \) | \(a_{864}= -1.51665370 \pm 6.7 \cdot 10^{-8} \) |
\(a_{865}= -0.01721982 \pm 5.2 \cdot 10^{-8} \) | \(a_{866}= -0.78714798 \pm 5.3 \cdot 10^{-8} \) | \(a_{867}= -0.70486402 \pm 4.1 \cdot 10^{-8} \) |
\(a_{868}= +0.13019189 \pm 9.8 \cdot 10^{-8} \) | \(a_{869}= +0.25680225 \pm 2.7 \cdot 10^{-8} \) | \(a_{870}= -0.67118226 \pm 2.6 \cdot 10^{-8} \) |
\(a_{871}= +0.07318287 \pm 6.4 \cdot 10^{-8} \) | \(a_{872}= -0.02873861 \pm 7.5 \cdot 10^{-8} \) | \(a_{873}= -0.76591106 \pm 6.8 \cdot 10^{-8} \) |
\(a_{874}= +0.30828297 \pm 4.5 \cdot 10^{-8} \) | \(a_{875}= +0.24350327 \pm 6.1 \cdot 10^{-8} \) | \(a_{876}= -0.58999620 \pm 4.7 \cdot 10^{-8} \) |
\(a_{877}= +0.68754063 \pm 7.2 \cdot 10^{-8} \) | \(a_{878}= +1.21471897 \pm 1.0 \cdot 10^{-7} \) | \(a_{879}= +0.69114091 \pm 6.1 \cdot 10^{-8} \) |
\(a_{880}= +0.58559335 \pm 2.8 \cdot 10^{-8} \) | \(a_{881}= -1.00255703 \pm 8.1 \cdot 10^{-8} \) | \(a_{882}= +0.07908766 \pm 1.3 \cdot 10^{-7} \) |
\(a_{883}= -0.58294659 \pm 9.8 \cdot 10^{-8} \) | \(a_{884}= -0.10792664 \pm 2.7 \cdot 10^{-8} \) | \(a_{885}= +0.15037342 \pm 3.6 \cdot 10^{-8} \) |
\(a_{886}= -2.56163780 \pm 8.6 \cdot 10^{-8} \) | \(a_{887}= +0.79682378 \pm 9.4 \cdot 10^{-8} \) | \(a_{888}= -0.03070311 \pm 4.6 \cdot 10^{-8} \) |
\(a_{889}= +0.09564022 \pm 7.7 \cdot 10^{-8} \) | \(a_{890}= +0.08843529 \pm 5.1 \cdot 10^{-8} \) | \(a_{891}= +0.73885607 \pm 3.4 \cdot 10^{-8} \) |
\(a_{892}= -0.13859420 \pm 3.5 \cdot 10^{-8} \) | \(a_{893}= -1.51901806 \pm 6.3 \cdot 10^{-8} \) | \(a_{894}= +0.10025264 \pm 9.7 \cdot 10^{-8} \) |
\(a_{895}= -0.25307144 \pm 4.6 \cdot 10^{-8} \) | \(a_{896}= +0.04213922 \pm 5.4 \cdot 10^{-8} \) | \(a_{897}= +0.04302718 \pm 3.5 \cdot 10^{-8} \) |
\(a_{898}= -0.77954861 \pm 8.6 \cdot 10^{-8} \) | \(a_{899}= -0.64646269 \pm 2.7 \cdot 10^{-8} \) | \(a_{900}= +0.33521938 \pm 1.6 \cdot 10^{-8} \) |
\(a_{901}= -0.21450545 \pm 3.7 \cdot 10^{-8} \) | \(a_{902}= -2.82364998 \pm 4.9 \cdot 10^{-8} \) | \(a_{903}= -0.03038289 \pm 1.0 \cdot 10^{-7} \) |
\(a_{904}= +0.01811752 \pm 4.7 \cdot 10^{-8} \) | \(a_{905}= +0.23560756 \pm 4.5 \cdot 10^{-8} \) | \(a_{906}= +0.85729349 \pm 2.7 \cdot 10^{-8} \) |
\(a_{907}= +1.61932272 \pm 5.0 \cdot 10^{-8} \) | \(a_{908}= -1.74518502 \pm 3.0 \cdot 10^{-8} \) | \(a_{909}= -0.58749033 \pm 4.1 \cdot 10^{-8} \) |
\(a_{910}= +0.06656633 \pm 1.9 \cdot 10^{-7} \) | \(a_{911}= -0.76107479 \pm 5.1 \cdot 10^{-8} \) | \(a_{912}= +1.18102526 \pm 2.4 \cdot 10^{-8} \) |
\(a_{913}= +1.44452261 \pm 3.1 \cdot 10^{-8} \) | \(a_{914}= +0.72680399 \pm 6.7 \cdot 10^{-8} \) | \(a_{915}= -0.12755181 \pm 3.2 \cdot 10^{-8} \) |
\(a_{916}= -0.40624391 \pm 4.7 \cdot 10^{-8} \) | \(a_{917}= +0.31677293 \pm 6.0 \cdot 10^{-8} \) | \(a_{918}= -0.46443575 \pm 3.6 \cdot 10^{-8} \) |
\(a_{919}= -0.08661476 \pm 5.6 \cdot 10^{-8} \) | \(a_{920}= +0.00287308 \pm 4.2 \cdot 10^{-8} \) | \(a_{921}= -0.88429615 \pm 5.3 \cdot 10^{-8} \) |
\(a_{922}= +0.39611235 \pm 7.6 \cdot 10^{-8} \) | \(a_{923}= +0.31606267 \pm 3.1 \cdot 10^{-8} \) | \(a_{924}= +0.46514422 \pm 1.5 \cdot 10^{-7} \) |
\(a_{925}= +0.62493272 \pm 3.7 \cdot 10^{-8} \) | \(a_{926}= +1.87516258 \pm 6.2 \cdot 10^{-8} \) | \(a_{927}= +0.50553883 \pm 3.4 \cdot 10^{-8} \) |
\(a_{928}= +2.51886735 \pm 4.3 \cdot 10^{-8} \) | \(a_{929}= +1.14366086 \pm 6.1 \cdot 10^{-8} \) | \(a_{930}= +0.13362349 \pm 4.9 \cdot 10^{-8} \) |
\(a_{931}= -0.20899176 \pm 6.4 \cdot 10^{-8} \) | \(a_{932}= +0.90446081 \pm 3.8 \cdot 10^{-8} \) | \(a_{933}= +0.06042173 \pm 3.6 \cdot 10^{-8} \) |
\(a_{934}= -1.70363760 \pm 7.4 \cdot 10^{-8} \) | \(a_{935}= +0.17244041 \pm 2.2 \cdot 10^{-8} \) | \(a_{936}= -0.00811058 \pm 3.5 \cdot 10^{-8} \) |
\(a_{937}= +0.81813263 \pm 8.7 \cdot 10^{-8} \) | \(a_{938}= +0.10533331 \pm 1.6 \cdot 10^{-7} \) | \(a_{939}= -0.02785811 \pm 6.3 \cdot 10^{-8} \) |
\(a_{940}= +0.34111039 \pm 2.5 \cdot 10^{-8} \) | \(a_{941}= -1.69931251 \pm 6.3 \cdot 10^{-8} \) | \(a_{942}= +0.32165979 \pm 4.7 \cdot 10^{-8} \) |
\(a_{943}= -0.18415039 \pm 7.2 \cdot 10^{-8} \) | \(a_{944}= -0.58685686 \pm 9.4 \cdot 10^{-8} \) | \(a_{945}= +0.14031428 \pm 1.2 \cdot 10^{-7} \) |
\(a_{946}= +0.23859859 \pm 2.2 \cdot 10^{-8} \) | \(a_{947}= -1.02957390 \pm 7.1 \cdot 10^{-8} \) | \(a_{948}= -0.11630380 \pm 3.7 \cdot 10^{-8} \) |
\(a_{949}= -0.29055137 \pm 6.3 \cdot 10^{-8} \) | \(a_{950}= -1.80842009 \pm 3.3 \cdot 10^{-8} \) | \(a_{951}= +0.84711236 \pm 4.3 \cdot 10^{-8} \) |
\(a_{952}= +0.00644689 \pm 1.0 \cdot 10^{-7} \) | \(a_{953}= -1.82168645 \pm 5.5 \cdot 10^{-8} \) | \(a_{954}= +0.38841502 \pm 3.6 \cdot 10^{-8} \) |
\(a_{955}= +0.50420306 \pm 3.6 \cdot 10^{-8} \) | \(a_{956}= +0.65022083 \pm 4.8 \cdot 10^{-8} \) | \(a_{957}= -2.30965536 \pm 2.2 \cdot 10^{-8} \) |
\(a_{958}= +0.42449155 \pm 8.9 \cdot 10^{-8} \) | \(a_{959}= -0.18153243 \pm 5.3 \cdot 10^{-8} \) | \(a_{960}= -0.24443104 \pm 3.9 \cdot 10^{-8} \) |
\(a_{961}= -0.87129785 \pm 4.6 \cdot 10^{-8} \) | \(a_{962}= +0.36432627 \pm 3.0 \cdot 10^{-8} \) | \(a_{963}= +0.66438448 \pm 3.4 \cdot 10^{-8} \) |
\(a_{964}= -0.19332246 \pm 3.6 \cdot 10^{-8} \) | \(a_{965}= +0.10880804 \pm 6.5 \cdot 10^{-8} \) | \(a_{966}= +0.06192972 \pm 2.0 \cdot 10^{-7} \) |
\(a_{967}= -1.26208804 \pm 8.3 \cdot 10^{-8} \) | \(a_{968}= +0.09580827 \pm 3.2 \cdot 10^{-8} \) | \(a_{969}= +0.34777800 \pm 1.0 \cdot 10^{-8} \) |
\(a_{970}= -0.92785595 \pm 7.5 \cdot 10^{-8} \) | \(a_{971}= +0.93585244 \pm 6.0 \cdot 10^{-8} \) | \(a_{972}= +0.70714736 \pm 3.3 \cdot 10^{-8} \) |
\(a_{973}= -0.65646816 \pm 5.1 \cdot 10^{-8} \) | \(a_{974}= +0.85369671 \pm 7.2 \cdot 10^{-8} \) | \(a_{975}= -0.25240191 \pm 3.3 \cdot 10^{-8} \) |
\(a_{976}= +0.49779181 \pm 6.3 \cdot 10^{-8} \) | \(a_{977}= -0.49918898 \pm 8.9 \cdot 10^{-8} \) | \(a_{978}= +0.72981318 \pm 7.0 \cdot 10^{-8} \) |
\(a_{979}= +0.30432126 \pm 3.8 \cdot 10^{-8} \) | \(a_{980}= +0.04693115 \pm 1.1 \cdot 10^{-7} \) | \(a_{981}= +0.20369347 \pm 6.5 \cdot 10^{-8} \) |
\(a_{982}= -0.87648362 \pm 7.0 \cdot 10^{-8} \) | \(a_{983}= +1.22589668 \pm 5.3 \cdot 10^{-8} \) | \(a_{984}= -0.05307274 \pm 2.4 \cdot 10^{-8} \) |
\(a_{985}= -0.45873984 \pm 5.7 \cdot 10^{-8} \) | \(a_{986}= +0.77133761 \pm 3.0 \cdot 10^{-8} \) | \(a_{987}= -0.30514941 \pm 1.2 \cdot 10^{-7} \) |
\(a_{988}= -0.51642446 \pm 1.8 \cdot 10^{-8} \) | \(a_{989}= +0.01556072 \pm 4.7 \cdot 10^{-8} \) | \(a_{990}= -0.31224589 \pm 3.6 \cdot 10^{-8} \) |
\(a_{991}= +0.34048106 \pm 6.2 \cdot 10^{-8} \) | \(a_{992}= -0.50147311 \pm 4.9 \cdot 10^{-8} \) | \(a_{993}= -0.16098716 \pm 7.1 \cdot 10^{-8} \) |
\(a_{994}= +0.45491421 \pm 1.3 \cdot 10^{-7} \) | \(a_{995}= +0.09028026 \pm 5.8 \cdot 10^{-8} \) | \(a_{996}= -0.65421337 \pm 2.3 \cdot 10^{-8} \) |
\(a_{997}= +1.24910597 \pm 5.9 \cdot 10^{-8} \) | \(a_{998}= -0.28960154 \pm 5.0 \cdot 10^{-8} \) | \(a_{999}= +0.76795845 \pm 4.1 \cdot 10^{-8} \) |
\(a_{1000}= -0.03594217 \pm 4.7 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000