Properties

Label 10.26.a.d.1.1
Level $10$
Weight $26$
Character 10.1
Self dual yes
Analytic conductor $39.600$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,26,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.5996779952\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{95351}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 95351 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-308.790\) of defining polynomial
Character \(\chi\) \(=\) 10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4096.00 q^{2} -715531. q^{3} +1.67772e7 q^{4} -2.44141e8 q^{5} -2.93082e9 q^{6} -6.40133e10 q^{7} +6.87195e10 q^{8} -3.35303e11 q^{9} -1.00000e12 q^{10} +1.40584e13 q^{11} -1.20046e13 q^{12} +1.57637e13 q^{13} -2.62199e14 q^{14} +1.74690e14 q^{15} +2.81475e14 q^{16} -1.00698e15 q^{17} -1.37340e15 q^{18} -8.66632e15 q^{19} -4.09600e15 q^{20} +4.58035e16 q^{21} +5.75832e16 q^{22} +1.43338e17 q^{23} -4.91709e16 q^{24} +5.96046e16 q^{25} +6.45682e16 q^{26} +8.46182e17 q^{27} -1.07397e18 q^{28} -3.60779e17 q^{29} +7.15531e17 q^{30} +8.72952e17 q^{31} +1.15292e18 q^{32} -1.00592e19 q^{33} -4.12457e18 q^{34} +1.56283e19 q^{35} -5.62546e18 q^{36} +7.37033e19 q^{37} -3.54972e19 q^{38} -1.12794e19 q^{39} -1.67772e19 q^{40} -6.57824e19 q^{41} +1.87611e20 q^{42} +4.50969e20 q^{43} +2.35861e20 q^{44} +8.18612e19 q^{45} +5.87113e20 q^{46} -5.55700e20 q^{47} -2.01404e20 q^{48} +2.75664e21 q^{49} +2.44141e20 q^{50} +7.20523e20 q^{51} +2.64471e20 q^{52} +4.75642e21 q^{53} +3.46596e21 q^{54} -3.43223e21 q^{55} -4.39896e21 q^{56} +6.20102e21 q^{57} -1.47775e21 q^{58} -1.95774e22 q^{59} +2.93082e21 q^{60} -2.95892e21 q^{61} +3.57561e21 q^{62} +2.14639e22 q^{63} +4.72237e21 q^{64} -3.84856e21 q^{65} -4.12026e22 q^{66} +4.26809e22 q^{67} -1.68942e22 q^{68} -1.02563e23 q^{69} +6.40133e22 q^{70} -1.93990e23 q^{71} -2.30419e22 q^{72} -2.11325e22 q^{73} +3.01889e23 q^{74} -4.26490e22 q^{75} -1.45397e23 q^{76} -8.99925e23 q^{77} -4.62006e22 q^{78} -4.99401e23 q^{79} -6.87195e22 q^{80} -3.21371e23 q^{81} -2.69445e23 q^{82} +1.79998e24 q^{83} +7.68456e23 q^{84} +2.45844e23 q^{85} +1.84717e24 q^{86} +2.58149e23 q^{87} +9.66086e23 q^{88} +2.07122e24 q^{89} +3.35303e23 q^{90} -1.00909e24 q^{91} +2.40482e24 q^{92} -6.24624e23 q^{93} -2.27615e24 q^{94} +2.11580e24 q^{95} -8.24952e23 q^{96} -3.44576e24 q^{97} +1.12912e25 q^{98} -4.71383e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8192 q^{2} - 97092 q^{3} + 33554432 q^{4} - 488281250 q^{5} - 397688832 q^{6} - 16137160124 q^{7} + 137438953472 q^{8} - 800124539454 q^{9} - 2000000000000 q^{10} + 14416600801344 q^{11} - 1628933455872 q^{12}+ \cdots - 48\!\cdots\!88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4096.00 0.707107
\(3\) −715531. −0.777344 −0.388672 0.921376i \(-0.627066\pi\)
−0.388672 + 0.921376i \(0.627066\pi\)
\(4\) 1.67772e7 0.500000
\(5\) −2.44141e8 −0.447214
\(6\) −2.93082e9 −0.549665
\(7\) −6.40133e10 −1.74801 −0.874007 0.485914i \(-0.838487\pi\)
−0.874007 + 0.485914i \(0.838487\pi\)
\(8\) 6.87195e10 0.353553
\(9\) −3.35303e11 −0.395737
\(10\) −1.00000e12 −0.316228
\(11\) 1.40584e13 1.35060 0.675301 0.737542i \(-0.264014\pi\)
0.675301 + 0.737542i \(0.264014\pi\)
\(12\) −1.20046e13 −0.388672
\(13\) 1.57637e13 0.187658 0.0938289 0.995588i \(-0.470089\pi\)
0.0938289 + 0.995588i \(0.470089\pi\)
\(14\) −2.62199e14 −1.23603
\(15\) 1.74690e14 0.347639
\(16\) 2.81475e14 0.250000
\(17\) −1.00698e15 −0.419187 −0.209593 0.977789i \(-0.567214\pi\)
−0.209593 + 0.977789i \(0.567214\pi\)
\(18\) −1.37340e15 −0.279828
\(19\) −8.66632e15 −0.898286 −0.449143 0.893460i \(-0.648271\pi\)
−0.449143 + 0.893460i \(0.648271\pi\)
\(20\) −4.09600e15 −0.223607
\(21\) 4.58035e16 1.35881
\(22\) 5.75832e16 0.955020
\(23\) 1.43338e17 1.36384 0.681921 0.731426i \(-0.261145\pi\)
0.681921 + 0.731426i \(0.261145\pi\)
\(24\) −4.91709e16 −0.274832
\(25\) 5.96046e16 0.200000
\(26\) 6.45682e16 0.132694
\(27\) 8.46182e17 1.08497
\(28\) −1.07397e18 −0.874007
\(29\) −3.60779e17 −0.189351 −0.0946753 0.995508i \(-0.530181\pi\)
−0.0946753 + 0.995508i \(0.530181\pi\)
\(30\) 7.15531e17 0.245818
\(31\) 8.72952e17 0.199053 0.0995266 0.995035i \(-0.468267\pi\)
0.0995266 + 0.995035i \(0.468267\pi\)
\(32\) 1.15292e18 0.176777
\(33\) −1.00592e19 −1.04988
\(34\) −4.12457e18 −0.296410
\(35\) 1.56283e19 0.781736
\(36\) −5.62546e18 −0.197868
\(37\) 7.37033e19 1.84063 0.920313 0.391183i \(-0.127934\pi\)
0.920313 + 0.391183i \(0.127934\pi\)
\(38\) −3.54972e19 −0.635184
\(39\) −1.12794e19 −0.145875
\(40\) −1.67772e19 −0.158114
\(41\) −6.57824e19 −0.455315 −0.227657 0.973741i \(-0.573107\pi\)
−0.227657 + 0.973741i \(0.573107\pi\)
\(42\) 1.87611e20 0.960822
\(43\) 4.50969e20 1.72104 0.860519 0.509418i \(-0.170139\pi\)
0.860519 + 0.509418i \(0.170139\pi\)
\(44\) 2.35861e20 0.675301
\(45\) 8.18612e19 0.176979
\(46\) 5.87113e20 0.964382
\(47\) −5.55700e20 −0.697617 −0.348809 0.937194i \(-0.613414\pi\)
−0.348809 + 0.937194i \(0.613414\pi\)
\(48\) −2.01404e20 −0.194336
\(49\) 2.75664e21 2.05555
\(50\) 2.44141e20 0.141421
\(51\) 7.20523e20 0.325852
\(52\) 2.64471e20 0.0938289
\(53\) 4.75642e21 1.32994 0.664969 0.746871i \(-0.268445\pi\)
0.664969 + 0.746871i \(0.268445\pi\)
\(54\) 3.46596e21 0.767188
\(55\) −3.43223e21 −0.604008
\(56\) −4.39896e21 −0.618016
\(57\) 6.20102e21 0.698277
\(58\) −1.47775e21 −0.133891
\(59\) −1.95774e22 −1.43253 −0.716265 0.697828i \(-0.754150\pi\)
−0.716265 + 0.697828i \(0.754150\pi\)
\(60\) 2.93082e21 0.173819
\(61\) −2.95892e21 −0.142728 −0.0713641 0.997450i \(-0.522735\pi\)
−0.0713641 + 0.997450i \(0.522735\pi\)
\(62\) 3.57561e21 0.140752
\(63\) 2.14639e22 0.691753
\(64\) 4.72237e21 0.125000
\(65\) −3.84856e21 −0.0839231
\(66\) −4.12026e22 −0.742379
\(67\) 4.26809e22 0.637234 0.318617 0.947884i \(-0.396782\pi\)
0.318617 + 0.947884i \(0.396782\pi\)
\(68\) −1.68942e22 −0.209593
\(69\) −1.02563e23 −1.06017
\(70\) 6.40133e22 0.552771
\(71\) −1.93990e23 −1.40297 −0.701486 0.712683i \(-0.747480\pi\)
−0.701486 + 0.712683i \(0.747480\pi\)
\(72\) −2.30419e22 −0.139914
\(73\) −2.11325e22 −0.107998 −0.0539990 0.998541i \(-0.517197\pi\)
−0.0539990 + 0.998541i \(0.517197\pi\)
\(74\) 3.01889e23 1.30152
\(75\) −4.26490e22 −0.155469
\(76\) −1.45397e23 −0.449143
\(77\) −8.99925e23 −2.36087
\(78\) −4.62006e22 −0.103149
\(79\) −4.99401e23 −0.950848 −0.475424 0.879757i \(-0.657705\pi\)
−0.475424 + 0.879757i \(0.657705\pi\)
\(80\) −6.87195e22 −0.111803
\(81\) −3.21371e23 −0.447656
\(82\) −2.69445e23 −0.321956
\(83\) 1.79998e24 1.84838 0.924189 0.381937i \(-0.124743\pi\)
0.924189 + 0.381937i \(0.124743\pi\)
\(84\) 7.68456e23 0.679404
\(85\) 2.45844e23 0.187466
\(86\) 1.84717e24 1.21696
\(87\) 2.58149e23 0.147190
\(88\) 9.66086e23 0.477510
\(89\) 2.07122e24 0.888898 0.444449 0.895804i \(-0.353400\pi\)
0.444449 + 0.895804i \(0.353400\pi\)
\(90\) 3.35303e23 0.125143
\(91\) −1.00909e24 −0.328029
\(92\) 2.40482e24 0.681921
\(93\) −6.24624e23 −0.154733
\(94\) −2.27615e24 −0.493290
\(95\) 2.11580e24 0.401726
\(96\) −8.24952e23 −0.137416
\(97\) −3.44576e24 −0.504242 −0.252121 0.967696i \(-0.581128\pi\)
−0.252121 + 0.967696i \(0.581128\pi\)
\(98\) 1.12912e25 1.45349
\(99\) −4.71383e24 −0.534483
\(100\) 1.00000e24 0.100000
\(101\) 1.35804e24 0.119921 0.0599607 0.998201i \(-0.480902\pi\)
0.0599607 + 0.998201i \(0.480902\pi\)
\(102\) 2.95126e24 0.230412
\(103\) −1.81348e25 −1.25328 −0.626639 0.779310i \(-0.715570\pi\)
−0.626639 + 0.779310i \(0.715570\pi\)
\(104\) 1.08327e24 0.0663471
\(105\) −1.11825e25 −0.607677
\(106\) 1.94823e25 0.940409
\(107\) −4.09213e25 −1.75652 −0.878259 0.478186i \(-0.841295\pi\)
−0.878259 + 0.478186i \(0.841295\pi\)
\(108\) 1.41966e25 0.542484
\(109\) 4.31829e25 1.47055 0.735277 0.677767i \(-0.237052\pi\)
0.735277 + 0.677767i \(0.237052\pi\)
\(110\) −1.40584e25 −0.427098
\(111\) −5.27370e25 −1.43080
\(112\) −1.80181e25 −0.437003
\(113\) −2.61097e25 −0.566659 −0.283329 0.959023i \(-0.591439\pi\)
−0.283329 + 0.959023i \(0.591439\pi\)
\(114\) 2.53994e25 0.493756
\(115\) −3.49947e25 −0.609929
\(116\) −6.05287e24 −0.0946753
\(117\) −5.28563e24 −0.0742631
\(118\) −8.01888e25 −1.01295
\(119\) 6.44599e25 0.732744
\(120\) 1.20046e25 0.122909
\(121\) 8.92916e25 0.824126
\(122\) −1.21197e25 −0.100924
\(123\) 4.70694e25 0.353936
\(124\) 1.46457e25 0.0995266
\(125\) −1.45519e25 −0.0894427
\(126\) 8.79160e25 0.489144
\(127\) 3.07316e25 0.154895 0.0774477 0.996996i \(-0.475323\pi\)
0.0774477 + 0.996996i \(0.475323\pi\)
\(128\) 1.93428e25 0.0883883
\(129\) −3.22682e26 −1.33784
\(130\) −1.57637e25 −0.0593426
\(131\) 1.55205e26 0.530902 0.265451 0.964124i \(-0.414479\pi\)
0.265451 + 0.964124i \(0.414479\pi\)
\(132\) −1.68766e26 −0.524941
\(133\) 5.54760e26 1.57022
\(134\) 1.74821e26 0.450593
\(135\) −2.06587e26 −0.485212
\(136\) −6.91988e25 −0.148205
\(137\) 4.44205e26 0.868112 0.434056 0.900886i \(-0.357082\pi\)
0.434056 + 0.900886i \(0.357082\pi\)
\(138\) −4.20098e26 −0.749656
\(139\) 9.86493e26 1.60845 0.804227 0.594322i \(-0.202579\pi\)
0.804227 + 0.594322i \(0.202579\pi\)
\(140\) 2.62199e26 0.390868
\(141\) 3.97621e26 0.542288
\(142\) −7.94582e26 −0.992051
\(143\) 2.21613e26 0.253451
\(144\) −9.43795e25 −0.0989342
\(145\) 8.80809e25 0.0846801
\(146\) −8.65589e25 −0.0763661
\(147\) −1.97246e27 −1.59787
\(148\) 1.23654e27 0.920313
\(149\) 1.38635e27 0.948518 0.474259 0.880385i \(-0.342716\pi\)
0.474259 + 0.880385i \(0.342716\pi\)
\(150\) −1.74690e26 −0.109933
\(151\) −9.02182e26 −0.522495 −0.261248 0.965272i \(-0.584134\pi\)
−0.261248 + 0.965272i \(0.584134\pi\)
\(152\) −5.95545e26 −0.317592
\(153\) 3.37642e26 0.165888
\(154\) −3.68609e27 −1.66939
\(155\) −2.13123e26 −0.0890193
\(156\) −1.89238e26 −0.0729373
\(157\) 2.62328e27 0.933466 0.466733 0.884398i \(-0.345431\pi\)
0.466733 + 0.884398i \(0.345431\pi\)
\(158\) −2.04555e27 −0.672351
\(159\) −3.40337e27 −1.03382
\(160\) −2.81475e26 −0.0790569
\(161\) −9.17555e27 −2.38401
\(162\) −1.31634e27 −0.316540
\(163\) 1.18488e27 0.263834 0.131917 0.991261i \(-0.457887\pi\)
0.131917 + 0.991261i \(0.457887\pi\)
\(164\) −1.10365e27 −0.227657
\(165\) 2.45587e27 0.469521
\(166\) 7.37270e27 1.30700
\(167\) 7.47611e27 1.22948 0.614738 0.788732i \(-0.289262\pi\)
0.614738 + 0.788732i \(0.289262\pi\)
\(168\) 3.14760e27 0.480411
\(169\) −6.80792e27 −0.964785
\(170\) 1.00698e27 0.132558
\(171\) 2.90585e27 0.355485
\(172\) 7.56600e27 0.860519
\(173\) −3.35797e27 −0.355223 −0.177611 0.984101i \(-0.556837\pi\)
−0.177611 + 0.984101i \(0.556837\pi\)
\(174\) 1.05738e27 0.104079
\(175\) −3.81549e27 −0.349603
\(176\) 3.95709e27 0.337651
\(177\) 1.40082e28 1.11357
\(178\) 8.48373e27 0.628546
\(179\) 6.30645e27 0.435634 0.217817 0.975990i \(-0.430106\pi\)
0.217817 + 0.975990i \(0.430106\pi\)
\(180\) 1.37340e27 0.0884894
\(181\) 1.20387e28 0.723764 0.361882 0.932224i \(-0.382134\pi\)
0.361882 + 0.932224i \(0.382134\pi\)
\(182\) −4.13322e27 −0.231951
\(183\) 2.11720e27 0.110949
\(184\) 9.85012e27 0.482191
\(185\) −1.79940e28 −0.823153
\(186\) −2.55846e27 −0.109413
\(187\) −1.41565e28 −0.566154
\(188\) −9.32310e27 −0.348809
\(189\) −5.41669e28 −1.89654
\(190\) 8.66632e27 0.284063
\(191\) 2.13809e28 0.656309 0.328155 0.944624i \(-0.393573\pi\)
0.328155 + 0.944624i \(0.393573\pi\)
\(192\) −3.37900e27 −0.0971680
\(193\) 2.97996e27 0.0803054 0.0401527 0.999194i \(-0.487216\pi\)
0.0401527 + 0.999194i \(0.487216\pi\)
\(194\) −1.41138e28 −0.356553
\(195\) 2.75377e27 0.0652371
\(196\) 4.62487e28 1.02778
\(197\) 4.10890e28 0.856836 0.428418 0.903581i \(-0.359071\pi\)
0.428418 + 0.903581i \(0.359071\pi\)
\(198\) −1.93078e28 −0.377937
\(199\) −5.34406e28 −0.982218 −0.491109 0.871098i \(-0.663408\pi\)
−0.491109 + 0.871098i \(0.663408\pi\)
\(200\) 4.09600e27 0.0707107
\(201\) −3.05396e28 −0.495350
\(202\) 5.56255e27 0.0847973
\(203\) 2.30947e28 0.330987
\(204\) 1.20884e28 0.162926
\(205\) 1.60602e28 0.203623
\(206\) −7.42801e28 −0.886202
\(207\) −4.80618e28 −0.539722
\(208\) 4.43709e27 0.0469145
\(209\) −1.21835e29 −1.21323
\(210\) −4.58035e28 −0.429693
\(211\) 4.77946e28 0.422521 0.211260 0.977430i \(-0.432243\pi\)
0.211260 + 0.977430i \(0.432243\pi\)
\(212\) 7.97994e28 0.664969
\(213\) 1.38806e29 1.09059
\(214\) −1.67614e29 −1.24205
\(215\) −1.10100e29 −0.769672
\(216\) 5.81492e28 0.383594
\(217\) −5.58805e28 −0.347948
\(218\) 1.76877e29 1.03984
\(219\) 1.51210e28 0.0839516
\(220\) −5.75832e28 −0.302004
\(221\) −1.58737e28 −0.0786637
\(222\) −2.16011e29 −1.01173
\(223\) 4.45198e29 1.97125 0.985627 0.168934i \(-0.0540324\pi\)
0.985627 + 0.168934i \(0.0540324\pi\)
\(224\) −7.38023e28 −0.309008
\(225\) −1.99856e28 −0.0791474
\(226\) −1.06945e29 −0.400688
\(227\) −2.11324e29 −0.749248 −0.374624 0.927177i \(-0.622228\pi\)
−0.374624 + 0.927177i \(0.622228\pi\)
\(228\) 1.04036e29 0.349138
\(229\) 4.64740e29 1.47661 0.738307 0.674465i \(-0.235626\pi\)
0.738307 + 0.674465i \(0.235626\pi\)
\(230\) −1.43338e29 −0.431285
\(231\) 6.43925e29 1.83521
\(232\) −2.47926e28 −0.0669455
\(233\) 5.21268e29 1.33386 0.666932 0.745118i \(-0.267607\pi\)
0.666932 + 0.745118i \(0.267607\pi\)
\(234\) −2.16499e28 −0.0525120
\(235\) 1.35669e29 0.311984
\(236\) −3.28453e29 −0.716265
\(237\) 3.57337e29 0.739135
\(238\) 2.64028e29 0.518128
\(239\) −9.68016e29 −1.80264 −0.901319 0.433155i \(-0.857400\pi\)
−0.901319 + 0.433155i \(0.857400\pi\)
\(240\) 4.91709e28 0.0869097
\(241\) −1.30231e29 −0.218525 −0.109263 0.994013i \(-0.534849\pi\)
−0.109263 + 0.994013i \(0.534849\pi\)
\(242\) 3.65738e29 0.582745
\(243\) −4.87009e29 −0.736985
\(244\) −4.96424e28 −0.0713641
\(245\) −6.73007e29 −0.919271
\(246\) 1.92796e29 0.250271
\(247\) −1.36613e29 −0.168570
\(248\) 5.99888e28 0.0703759
\(249\) −1.28794e30 −1.43682
\(250\) −5.96046e28 −0.0632456
\(251\) 1.40543e30 1.41869 0.709345 0.704862i \(-0.248991\pi\)
0.709345 + 0.704862i \(0.248991\pi\)
\(252\) 3.60104e29 0.345877
\(253\) 2.01511e30 1.84201
\(254\) 1.25877e29 0.109528
\(255\) −1.75909e29 −0.145725
\(256\) 7.92282e28 0.0625000
\(257\) −1.02386e30 −0.769263 −0.384632 0.923070i \(-0.625671\pi\)
−0.384632 + 0.923070i \(0.625671\pi\)
\(258\) −1.32171e30 −0.945995
\(259\) −4.71799e30 −3.21744
\(260\) −6.45682e28 −0.0419616
\(261\) 1.20970e29 0.0749330
\(262\) 6.35719e29 0.375404
\(263\) −9.94329e29 −0.559865 −0.279933 0.960020i \(-0.590312\pi\)
−0.279933 + 0.960020i \(0.590312\pi\)
\(264\) −6.91265e29 −0.371189
\(265\) −1.16123e30 −0.594767
\(266\) 2.27230e30 1.11031
\(267\) −1.48203e30 −0.690979
\(268\) 7.16067e29 0.318617
\(269\) 9.41553e29 0.399891 0.199945 0.979807i \(-0.435924\pi\)
0.199945 + 0.979807i \(0.435924\pi\)
\(270\) −8.46182e29 −0.343097
\(271\) −2.84694e29 −0.110220 −0.0551101 0.998480i \(-0.517551\pi\)
−0.0551101 + 0.998480i \(0.517551\pi\)
\(272\) −2.83438e29 −0.104797
\(273\) 7.22034e29 0.254991
\(274\) 1.81946e30 0.613848
\(275\) 8.37946e29 0.270120
\(276\) −1.72072e30 −0.530087
\(277\) 5.74193e30 1.69068 0.845339 0.534230i \(-0.179398\pi\)
0.845339 + 0.534230i \(0.179398\pi\)
\(278\) 4.04067e30 1.13735
\(279\) −2.92704e29 −0.0787726
\(280\) 1.07397e30 0.276385
\(281\) 7.10013e29 0.174758 0.0873790 0.996175i \(-0.472151\pi\)
0.0873790 + 0.996175i \(0.472151\pi\)
\(282\) 1.62865e30 0.383456
\(283\) 4.98063e30 1.12190 0.560950 0.827850i \(-0.310436\pi\)
0.560950 + 0.827850i \(0.310436\pi\)
\(284\) −3.25461e30 −0.701486
\(285\) −1.51392e30 −0.312279
\(286\) 9.07726e29 0.179217
\(287\) 4.21095e30 0.795896
\(288\) −3.86578e29 −0.0699571
\(289\) −4.75663e30 −0.824283
\(290\) 3.60779e29 0.0598779
\(291\) 2.46555e30 0.391969
\(292\) −3.54545e29 −0.0539990
\(293\) −4.89769e30 −0.714736 −0.357368 0.933964i \(-0.616326\pi\)
−0.357368 + 0.933964i \(0.616326\pi\)
\(294\) −8.07920e30 −1.12987
\(295\) 4.77963e30 0.640647
\(296\) 5.06485e30 0.650759
\(297\) 1.18960e31 1.46536
\(298\) 5.67850e30 0.670704
\(299\) 2.25954e30 0.255936
\(300\) −7.15531e29 −0.0777344
\(301\) −2.88680e31 −3.00840
\(302\) −3.69534e30 −0.369460
\(303\) −9.71724e29 −0.0932202
\(304\) −2.43935e30 −0.224572
\(305\) 7.22391e29 0.0638300
\(306\) 1.38298e30 0.117300
\(307\) −2.34261e31 −1.90752 −0.953762 0.300563i \(-0.902825\pi\)
−0.953762 + 0.300563i \(0.902825\pi\)
\(308\) −1.50982e31 −1.18044
\(309\) 1.29760e31 0.974228
\(310\) −8.72952e29 −0.0629461
\(311\) 1.34425e31 0.931054 0.465527 0.885034i \(-0.345865\pi\)
0.465527 + 0.885034i \(0.345865\pi\)
\(312\) −7.75117e29 −0.0515745
\(313\) 2.25707e31 1.44292 0.721458 0.692458i \(-0.243472\pi\)
0.721458 + 0.692458i \(0.243472\pi\)
\(314\) 1.07449e31 0.660060
\(315\) −5.24020e30 −0.309362
\(316\) −8.37856e30 −0.475424
\(317\) 4.83401e29 0.0263674 0.0131837 0.999913i \(-0.495803\pi\)
0.0131837 + 0.999913i \(0.495803\pi\)
\(318\) −1.39402e31 −0.731021
\(319\) −5.07198e30 −0.255737
\(320\) −1.15292e30 −0.0559017
\(321\) 2.92805e31 1.36542
\(322\) −3.75831e31 −1.68575
\(323\) 8.72677e30 0.376550
\(324\) −5.39171e30 −0.223828
\(325\) 9.39591e29 0.0375316
\(326\) 4.85329e30 0.186559
\(327\) −3.08987e31 −1.14313
\(328\) −4.52053e30 −0.160978
\(329\) 3.55722e31 1.21944
\(330\) 1.00592e31 0.332002
\(331\) −4.89856e31 −1.55675 −0.778375 0.627800i \(-0.783956\pi\)
−0.778375 + 0.627800i \(0.783956\pi\)
\(332\) 3.01986e31 0.924189
\(333\) −2.47130e31 −0.728403
\(334\) 3.06221e31 0.869370
\(335\) −1.04202e31 −0.284980
\(336\) 1.28926e31 0.339702
\(337\) 3.74477e31 0.950718 0.475359 0.879792i \(-0.342318\pi\)
0.475359 + 0.879792i \(0.342318\pi\)
\(338\) −2.78852e31 −0.682206
\(339\) 1.86823e31 0.440489
\(340\) 4.12457e30 0.0937330
\(341\) 1.22723e31 0.268842
\(342\) 1.19023e31 0.251366
\(343\) −9.06152e31 −1.84512
\(344\) 3.09903e31 0.608479
\(345\) 2.50398e31 0.474124
\(346\) −1.37543e31 −0.251181
\(347\) 1.26433e31 0.222711 0.111356 0.993781i \(-0.464481\pi\)
0.111356 + 0.993781i \(0.464481\pi\)
\(348\) 4.33102e30 0.0735952
\(349\) 5.64423e31 0.925308 0.462654 0.886539i \(-0.346897\pi\)
0.462654 + 0.886539i \(0.346897\pi\)
\(350\) −1.56283e31 −0.247206
\(351\) 1.33390e31 0.203603
\(352\) 1.62082e31 0.238755
\(353\) −1.66522e31 −0.236749 −0.118374 0.992969i \(-0.537768\pi\)
−0.118374 + 0.992969i \(0.537768\pi\)
\(354\) 5.73776e31 0.787412
\(355\) 4.73608e31 0.627428
\(356\) 3.47494e31 0.444449
\(357\) −4.61231e31 −0.569594
\(358\) 2.58312e31 0.308040
\(359\) 1.12363e32 1.29403 0.647014 0.762478i \(-0.276018\pi\)
0.647014 + 0.762478i \(0.276018\pi\)
\(360\) 5.62546e30 0.0625715
\(361\) −1.79714e31 −0.193082
\(362\) 4.93104e31 0.511778
\(363\) −6.38910e31 −0.640629
\(364\) −1.69297e31 −0.164014
\(365\) 5.15931e30 0.0482982
\(366\) 8.67204e30 0.0784527
\(367\) −1.62554e32 −1.42126 −0.710629 0.703567i \(-0.751590\pi\)
−0.710629 + 0.703567i \(0.751590\pi\)
\(368\) 4.03461e31 0.340960
\(369\) 2.20571e31 0.180185
\(370\) −7.37033e31 −0.582057
\(371\) −3.04474e32 −2.32475
\(372\) −1.04795e31 −0.0773663
\(373\) 8.65344e31 0.617772 0.308886 0.951099i \(-0.400044\pi\)
0.308886 + 0.951099i \(0.400044\pi\)
\(374\) −5.79849e31 −0.400332
\(375\) 1.04124e31 0.0695277
\(376\) −3.81874e31 −0.246645
\(377\) −5.68722e30 −0.0355331
\(378\) −2.21868e32 −1.34105
\(379\) −1.30491e32 −0.763117 −0.381558 0.924345i \(-0.624612\pi\)
−0.381558 + 0.924345i \(0.624612\pi\)
\(380\) 3.54972e31 0.200863
\(381\) −2.19894e31 −0.120407
\(382\) 8.75761e31 0.464081
\(383\) −3.19017e31 −0.163617 −0.0818087 0.996648i \(-0.526070\pi\)
−0.0818087 + 0.996648i \(0.526070\pi\)
\(384\) −1.38404e31 −0.0687081
\(385\) 2.19708e32 1.05581
\(386\) 1.22059e31 0.0567845
\(387\) −1.51211e32 −0.681078
\(388\) −5.78103e31 −0.252121
\(389\) 1.71823e32 0.725622 0.362811 0.931863i \(-0.381817\pi\)
0.362811 + 0.931863i \(0.381817\pi\)
\(390\) 1.12794e31 0.0461296
\(391\) −1.44338e32 −0.571704
\(392\) 1.89435e32 0.726747
\(393\) −1.11054e32 −0.412693
\(394\) 1.68301e32 0.605874
\(395\) 1.21924e32 0.425232
\(396\) −7.90849e31 −0.267241
\(397\) 1.44908e32 0.474471 0.237236 0.971452i \(-0.423759\pi\)
0.237236 + 0.971452i \(0.423759\pi\)
\(398\) −2.18893e32 −0.694533
\(399\) −3.96948e32 −1.22060
\(400\) 1.67772e31 0.0500000
\(401\) 6.47108e32 1.86927 0.934635 0.355609i \(-0.115726\pi\)
0.934635 + 0.355609i \(0.115726\pi\)
\(402\) −1.25090e32 −0.350265
\(403\) 1.37610e31 0.0373539
\(404\) 2.27842e31 0.0599607
\(405\) 7.84597e31 0.200198
\(406\) 9.45958e31 0.234043
\(407\) 1.03615e33 2.48595
\(408\) 4.95140e31 0.115206
\(409\) −1.49705e32 −0.337828 −0.168914 0.985631i \(-0.554026\pi\)
−0.168914 + 0.985631i \(0.554026\pi\)
\(410\) 6.57824e31 0.143983
\(411\) −3.17842e32 −0.674822
\(412\) −3.04251e32 −0.626639
\(413\) 1.25321e33 2.50408
\(414\) −1.96861e32 −0.381641
\(415\) −4.39447e32 −0.826619
\(416\) 1.81743e31 0.0331735
\(417\) −7.05867e32 −1.25032
\(418\) −4.99035e32 −0.857881
\(419\) 6.23538e32 1.04037 0.520185 0.854054i \(-0.325863\pi\)
0.520185 + 0.854054i \(0.325863\pi\)
\(420\) −1.87611e32 −0.303839
\(421\) 4.35871e32 0.685223 0.342611 0.939477i \(-0.388689\pi\)
0.342611 + 0.939477i \(0.388689\pi\)
\(422\) 1.95767e32 0.298767
\(423\) 1.86328e32 0.276073
\(424\) 3.26859e32 0.470204
\(425\) −6.00204e31 −0.0838373
\(426\) 5.68548e32 0.771165
\(427\) 1.89410e32 0.249491
\(428\) −6.86546e32 −0.878259
\(429\) −1.58571e32 −0.197019
\(430\) −4.50969e32 −0.544240
\(431\) −9.60606e32 −1.12611 −0.563053 0.826420i \(-0.690373\pi\)
−0.563053 + 0.826420i \(0.690373\pi\)
\(432\) 2.38179e32 0.271242
\(433\) 6.50298e32 0.719472 0.359736 0.933054i \(-0.382867\pi\)
0.359736 + 0.933054i \(0.382867\pi\)
\(434\) −2.28887e32 −0.246036
\(435\) −6.30246e31 −0.0658256
\(436\) 7.24489e32 0.735277
\(437\) −1.24221e33 −1.22512
\(438\) 6.19356e31 0.0593627
\(439\) −1.26999e33 −1.18303 −0.591515 0.806294i \(-0.701470\pi\)
−0.591515 + 0.806294i \(0.701470\pi\)
\(440\) −2.35861e32 −0.213549
\(441\) −9.24309e32 −0.813458
\(442\) −6.50186e31 −0.0556236
\(443\) 3.57910e32 0.297665 0.148832 0.988862i \(-0.452449\pi\)
0.148832 + 0.988862i \(0.452449\pi\)
\(444\) −8.84781e32 −0.715399
\(445\) −5.05670e32 −0.397527
\(446\) 1.82353e33 1.39389
\(447\) −9.91980e32 −0.737325
\(448\) −3.02294e32 −0.218502
\(449\) −2.89265e32 −0.203337 −0.101669 0.994818i \(-0.532418\pi\)
−0.101669 + 0.994818i \(0.532418\pi\)
\(450\) −8.18612e31 −0.0559656
\(451\) −9.24796e32 −0.614949
\(452\) −4.38048e32 −0.283329
\(453\) 6.45540e32 0.406158
\(454\) −8.65583e32 −0.529798
\(455\) 2.46359e32 0.146699
\(456\) 4.26131e32 0.246878
\(457\) 2.55962e33 1.44285 0.721427 0.692491i \(-0.243487\pi\)
0.721427 + 0.692491i \(0.243487\pi\)
\(458\) 1.90358e33 1.04412
\(459\) −8.52085e32 −0.454804
\(460\) −5.87113e32 −0.304964
\(461\) −7.93005e31 −0.0400880 −0.0200440 0.999799i \(-0.506381\pi\)
−0.0200440 + 0.999799i \(0.506381\pi\)
\(462\) 2.63752e33 1.29769
\(463\) 3.30952e32 0.158490 0.0792452 0.996855i \(-0.474749\pi\)
0.0792452 + 0.996855i \(0.474749\pi\)
\(464\) −1.01550e32 −0.0473376
\(465\) 1.52496e32 0.0691986
\(466\) 2.13511e33 0.943185
\(467\) −2.96201e33 −1.27387 −0.636936 0.770917i \(-0.719798\pi\)
−0.636936 + 0.770917i \(0.719798\pi\)
\(468\) −8.86781e31 −0.0371316
\(469\) −2.73215e33 −1.11389
\(470\) 5.55700e32 0.220606
\(471\) −1.87704e33 −0.725624
\(472\) −1.34535e33 −0.506476
\(473\) 6.33990e33 2.32444
\(474\) 1.46365e33 0.522648
\(475\) −5.16553e32 −0.179657
\(476\) 1.08146e33 0.366372
\(477\) −1.59484e33 −0.526306
\(478\) −3.96499e33 −1.27466
\(479\) 1.66525e33 0.521537 0.260769 0.965401i \(-0.416024\pi\)
0.260769 + 0.965401i \(0.416024\pi\)
\(480\) 2.01404e32 0.0614544
\(481\) 1.16184e33 0.345408
\(482\) −5.33427e32 −0.154521
\(483\) 6.56540e33 1.85320
\(484\) 1.49806e33 0.412063
\(485\) 8.41251e32 0.225504
\(486\) −1.99479e33 −0.521127
\(487\) −6.03193e33 −1.53583 −0.767917 0.640549i \(-0.778707\pi\)
−0.767917 + 0.640549i \(0.778707\pi\)
\(488\) −2.03335e32 −0.0504620
\(489\) −8.47822e32 −0.205090
\(490\) −2.75664e33 −0.650023
\(491\) 2.62144e33 0.602590 0.301295 0.953531i \(-0.402581\pi\)
0.301295 + 0.953531i \(0.402581\pi\)
\(492\) 7.89693e32 0.176968
\(493\) 3.63296e32 0.0793732
\(494\) −5.59568e32 −0.119197
\(495\) 1.15084e33 0.239028
\(496\) 2.45714e32 0.0497633
\(497\) 1.24179e34 2.45242
\(498\) −5.27540e33 −1.01599
\(499\) −8.04276e33 −1.51060 −0.755298 0.655382i \(-0.772508\pi\)
−0.755298 + 0.655382i \(0.772508\pi\)
\(500\) −2.44141e32 −0.0447214
\(501\) −5.34939e33 −0.955725
\(502\) 5.75664e33 1.00316
\(503\) 8.35523e33 1.42023 0.710115 0.704086i \(-0.248643\pi\)
0.710115 + 0.704086i \(0.248643\pi\)
\(504\) 1.47499e33 0.244572
\(505\) −3.31554e32 −0.0536305
\(506\) 8.25387e33 1.30250
\(507\) 4.87128e33 0.749969
\(508\) 5.15590e32 0.0774477
\(509\) −7.38135e33 −1.08184 −0.540920 0.841074i \(-0.681924\pi\)
−0.540920 + 0.841074i \(0.681924\pi\)
\(510\) −7.20523e32 −0.103043
\(511\) 1.35276e33 0.188782
\(512\) 3.24519e32 0.0441942
\(513\) −7.33328e33 −0.974611
\(514\) −4.19371e33 −0.543951
\(515\) 4.42744e33 0.560483
\(516\) −5.41371e33 −0.668919
\(517\) −7.81225e33 −0.942203
\(518\) −1.93249e34 −2.27507
\(519\) 2.40274e33 0.276130
\(520\) −2.64471e32 −0.0296713
\(521\) −1.16894e34 −1.28032 −0.640161 0.768241i \(-0.721133\pi\)
−0.640161 + 0.768241i \(0.721133\pi\)
\(522\) 4.95495e32 0.0529856
\(523\) −1.32178e34 −1.38003 −0.690014 0.723796i \(-0.742396\pi\)
−0.690014 + 0.723796i \(0.742396\pi\)
\(524\) 2.60391e33 0.265451
\(525\) 2.73010e33 0.271761
\(526\) −4.07277e33 −0.395884
\(527\) −8.79041e32 −0.0834404
\(528\) −2.83142e33 −0.262470
\(529\) 9.50007e33 0.860064
\(530\) −4.75642e33 −0.420563
\(531\) 6.56435e33 0.566905
\(532\) 9.30733e33 0.785108
\(533\) −1.03698e33 −0.0854434
\(534\) −6.07037e33 −0.488596
\(535\) 9.99056e33 0.785539
\(536\) 2.93301e33 0.225296
\(537\) −4.51247e33 −0.338638
\(538\) 3.85660e33 0.282765
\(539\) 3.87539e34 2.77623
\(540\) −3.46596e33 −0.242606
\(541\) −1.02274e34 −0.699522 −0.349761 0.936839i \(-0.613737\pi\)
−0.349761 + 0.936839i \(0.613737\pi\)
\(542\) −1.16610e33 −0.0779375
\(543\) −8.61406e33 −0.562613
\(544\) −1.16096e33 −0.0741024
\(545\) −1.05427e34 −0.657651
\(546\) 2.95745e33 0.180306
\(547\) −9.41592e33 −0.561075 −0.280538 0.959843i \(-0.590513\pi\)
−0.280538 + 0.959843i \(0.590513\pi\)
\(548\) 7.45252e33 0.434056
\(549\) 9.92134e32 0.0564828
\(550\) 3.43223e33 0.191004
\(551\) 3.12663e33 0.170091
\(552\) −7.04807e33 −0.374828
\(553\) 3.19683e34 1.66209
\(554\) 2.35190e34 1.19549
\(555\) 1.28753e34 0.639873
\(556\) 1.65506e34 0.804227
\(557\) −1.93891e34 −0.921227 −0.460614 0.887601i \(-0.652371\pi\)
−0.460614 + 0.887601i \(0.652371\pi\)
\(558\) −1.19891e33 −0.0557007
\(559\) 7.10894e33 0.322966
\(560\) 4.39896e33 0.195434
\(561\) 1.01294e34 0.440097
\(562\) 2.90821e33 0.123573
\(563\) −2.14770e34 −0.892520 −0.446260 0.894903i \(-0.647244\pi\)
−0.446260 + 0.894903i \(0.647244\pi\)
\(564\) 6.67097e33 0.271144
\(565\) 6.37444e33 0.253418
\(566\) 2.04007e34 0.793303
\(567\) 2.05720e34 0.782508
\(568\) −1.33309e34 −0.496026
\(569\) −1.35765e33 −0.0494180 −0.0247090 0.999695i \(-0.507866\pi\)
−0.0247090 + 0.999695i \(0.507866\pi\)
\(570\) −6.20102e33 −0.220815
\(571\) −1.57397e34 −0.548334 −0.274167 0.961682i \(-0.588402\pi\)
−0.274167 + 0.961682i \(0.588402\pi\)
\(572\) 3.71804e33 0.126726
\(573\) −1.52987e34 −0.510178
\(574\) 1.72481e34 0.562784
\(575\) 8.54362e33 0.272768
\(576\) −1.58343e33 −0.0494671
\(577\) −5.82494e34 −1.78071 −0.890356 0.455266i \(-0.849544\pi\)
−0.890356 + 0.455266i \(0.849544\pi\)
\(578\) −1.94831e34 −0.582856
\(579\) −2.13226e33 −0.0624249
\(580\) 1.47775e33 0.0423401
\(581\) −1.15222e35 −3.23099
\(582\) 1.00989e34 0.277164
\(583\) 6.68676e34 1.79622
\(584\) −1.45222e33 −0.0381831
\(585\) 1.29044e33 0.0332115
\(586\) −2.00609e34 −0.505395
\(587\) 4.94816e33 0.122030 0.0610151 0.998137i \(-0.480566\pi\)
0.0610151 + 0.998137i \(0.480566\pi\)
\(588\) −3.30924e34 −0.798935
\(589\) −7.56528e33 −0.178807
\(590\) 1.95774e34 0.453006
\(591\) −2.94005e34 −0.666056
\(592\) 2.07456e34 0.460156
\(593\) −5.71306e34 −1.24075 −0.620376 0.784304i \(-0.713020\pi\)
−0.620376 + 0.784304i \(0.713020\pi\)
\(594\) 4.87259e34 1.03617
\(595\) −1.57373e34 −0.327693
\(596\) 2.32592e34 0.474259
\(597\) 3.82384e34 0.763521
\(598\) 9.25509e33 0.180974
\(599\) 4.92727e34 0.943564 0.471782 0.881715i \(-0.343611\pi\)
0.471782 + 0.881715i \(0.343611\pi\)
\(600\) −2.93082e33 −0.0549665
\(601\) 7.24167e34 1.33017 0.665086 0.746767i \(-0.268395\pi\)
0.665086 + 0.746767i \(0.268395\pi\)
\(602\) −1.18243e35 −2.12726
\(603\) −1.43111e34 −0.252177
\(604\) −1.51361e34 −0.261248
\(605\) −2.17997e34 −0.368560
\(606\) −3.98018e33 −0.0659166
\(607\) −2.52292e34 −0.409304 −0.204652 0.978835i \(-0.565606\pi\)
−0.204652 + 0.978835i \(0.565606\pi\)
\(608\) −9.99158e33 −0.158796
\(609\) −1.65250e34 −0.257291
\(610\) 2.95892e33 0.0451346
\(611\) −8.75990e33 −0.130913
\(612\) 5.66470e33 0.0829438
\(613\) 8.87757e34 1.27362 0.636808 0.771023i \(-0.280255\pi\)
0.636808 + 0.771023i \(0.280255\pi\)
\(614\) −9.59532e34 −1.34882
\(615\) −1.14916e34 −0.158285
\(616\) −6.18424e34 −0.834694
\(617\) 3.04657e34 0.402946 0.201473 0.979494i \(-0.435427\pi\)
0.201473 + 0.979494i \(0.435427\pi\)
\(618\) 5.31498e34 0.688883
\(619\) 8.61565e34 1.09435 0.547173 0.837019i \(-0.315704\pi\)
0.547173 + 0.837019i \(0.315704\pi\)
\(620\) −3.57561e33 −0.0445096
\(621\) 1.21290e35 1.47972
\(622\) 5.50605e34 0.658355
\(623\) −1.32586e35 −1.55381
\(624\) −3.17488e33 −0.0364687
\(625\) 3.55271e33 0.0400000
\(626\) 9.24496e34 1.02030
\(627\) 8.71765e34 0.943094
\(628\) 4.40113e34 0.466733
\(629\) −7.42174e34 −0.771566
\(630\) −2.14639e34 −0.218752
\(631\) −3.11716e34 −0.311452 −0.155726 0.987800i \(-0.549772\pi\)
−0.155726 + 0.987800i \(0.549772\pi\)
\(632\) −3.43186e34 −0.336175
\(633\) −3.41985e34 −0.328444
\(634\) 1.98001e33 0.0186446
\(635\) −7.50283e33 −0.0692713
\(636\) −5.70990e34 −0.516910
\(637\) 4.34548e34 0.385741
\(638\) −2.07748e34 −0.180834
\(639\) 6.50454e34 0.555208
\(640\) −4.72237e33 −0.0395285
\(641\) 1.40132e35 1.15030 0.575150 0.818048i \(-0.304944\pi\)
0.575150 + 0.818048i \(0.304944\pi\)
\(642\) 1.19933e35 0.965496
\(643\) 2.61025e34 0.206085 0.103042 0.994677i \(-0.467142\pi\)
0.103042 + 0.994677i \(0.467142\pi\)
\(644\) −1.53940e35 −1.19201
\(645\) 7.87799e34 0.598300
\(646\) 3.57449e34 0.266261
\(647\) 1.90009e35 1.38826 0.694131 0.719848i \(-0.255789\pi\)
0.694131 + 0.719848i \(0.255789\pi\)
\(648\) −2.20844e34 −0.158270
\(649\) −2.75226e35 −1.93478
\(650\) 3.84856e33 0.0265388
\(651\) 3.99843e34 0.270475
\(652\) 1.98791e34 0.131917
\(653\) 1.69030e35 1.10040 0.550198 0.835034i \(-0.314552\pi\)
0.550198 + 0.835034i \(0.314552\pi\)
\(654\) −1.26561e35 −0.808312
\(655\) −3.78918e34 −0.237426
\(656\) −1.85161e34 −0.113829
\(657\) 7.08581e33 0.0427388
\(658\) 1.45704e35 0.862277
\(659\) −2.20649e35 −1.28125 −0.640627 0.767853i \(-0.721325\pi\)
−0.640627 + 0.767853i \(0.721325\pi\)
\(660\) 4.12026e34 0.234761
\(661\) 9.29705e34 0.519789 0.259894 0.965637i \(-0.416312\pi\)
0.259894 + 0.965637i \(0.416312\pi\)
\(662\) −2.00645e35 −1.10079
\(663\) 1.13581e34 0.0611487
\(664\) 1.23693e35 0.653500
\(665\) −1.35439e35 −0.702222
\(666\) −1.01224e35 −0.515059
\(667\) −5.17134e34 −0.258244
\(668\) 1.25428e35 0.614738
\(669\) −3.18553e35 −1.53234
\(670\) −4.26809e34 −0.201511
\(671\) −4.15976e34 −0.192769
\(672\) 5.28079e34 0.240205
\(673\) −1.44593e35 −0.645593 −0.322796 0.946468i \(-0.604623\pi\)
−0.322796 + 0.946468i \(0.604623\pi\)
\(674\) 1.53386e35 0.672259
\(675\) 5.04364e34 0.216993
\(676\) −1.14218e35 −0.482392
\(677\) −2.51992e35 −1.04479 −0.522394 0.852704i \(-0.674961\pi\)
−0.522394 + 0.852704i \(0.674961\pi\)
\(678\) 7.65228e34 0.311472
\(679\) 2.20575e35 0.881422
\(680\) 1.68942e34 0.0662792
\(681\) 1.51209e35 0.582423
\(682\) 5.02674e34 0.190100
\(683\) 1.41934e35 0.527022 0.263511 0.964656i \(-0.415119\pi\)
0.263511 + 0.964656i \(0.415119\pi\)
\(684\) 4.87520e34 0.177742
\(685\) −1.08448e35 −0.388232
\(686\) −3.71160e35 −1.30470
\(687\) −3.32536e35 −1.14784
\(688\) 1.26936e35 0.430260
\(689\) 7.49788e34 0.249573
\(690\) 1.02563e35 0.335256
\(691\) 4.26858e34 0.137028 0.0685138 0.997650i \(-0.478174\pi\)
0.0685138 + 0.997650i \(0.478174\pi\)
\(692\) −5.63374e34 −0.177611
\(693\) 3.01748e35 0.934284
\(694\) 5.17870e34 0.157481
\(695\) −2.40843e35 −0.719323
\(696\) 1.77399e34 0.0520397
\(697\) 6.62413e34 0.190862
\(698\) 2.31187e35 0.654292
\(699\) −3.72984e35 −1.03687
\(700\) −6.40133e34 −0.174801
\(701\) −7.85276e34 −0.210643 −0.105322 0.994438i \(-0.533587\pi\)
−0.105322 + 0.994438i \(0.533587\pi\)
\(702\) 5.46364e34 0.143969
\(703\) −6.38736e35 −1.65341
\(704\) 6.63889e34 0.168825
\(705\) −9.70754e34 −0.242519
\(706\) −6.82074e34 −0.167407
\(707\) −8.69330e34 −0.209624
\(708\) 2.35019e35 0.556784
\(709\) −3.06083e35 −0.712461 −0.356231 0.934398i \(-0.615938\pi\)
−0.356231 + 0.934398i \(0.615938\pi\)
\(710\) 1.93990e35 0.443659
\(711\) 1.67451e35 0.376285
\(712\) 1.42333e35 0.314273
\(713\) 1.25127e35 0.271477
\(714\) −1.88920e35 −0.402764
\(715\) −5.41047e34 −0.113347
\(716\) 1.05805e35 0.217817
\(717\) 6.92646e35 1.40127
\(718\) 4.60240e35 0.915016
\(719\) 2.20247e35 0.430327 0.215163 0.976578i \(-0.430972\pi\)
0.215163 + 0.976578i \(0.430972\pi\)
\(720\) 2.30419e34 0.0442447
\(721\) 1.16087e36 2.19075
\(722\) −7.36109e34 −0.136530
\(723\) 9.31844e34 0.169869
\(724\) 2.01976e35 0.361882
\(725\) −2.15041e34 −0.0378701
\(726\) −2.61697e35 −0.452993
\(727\) 8.70105e33 0.0148044 0.00740221 0.999973i \(-0.497644\pi\)
0.00740221 + 0.999973i \(0.497644\pi\)
\(728\) −6.93440e34 −0.115976
\(729\) 6.20764e35 1.02055
\(730\) 2.11325e34 0.0341520
\(731\) −4.54115e35 −0.721437
\(732\) 3.55207e34 0.0554744
\(733\) −1.92172e35 −0.295046 −0.147523 0.989059i \(-0.547130\pi\)
−0.147523 + 0.989059i \(0.547130\pi\)
\(734\) −6.65823e35 −1.00498
\(735\) 4.81558e35 0.714589
\(736\) 1.65258e35 0.241095
\(737\) 6.00026e35 0.860650
\(738\) 9.03457e34 0.127410
\(739\) 9.08434e35 1.25961 0.629807 0.776751i \(-0.283134\pi\)
0.629807 + 0.776751i \(0.283134\pi\)
\(740\) −3.01889e35 −0.411576
\(741\) 9.77512e34 0.131037
\(742\) −1.24713e36 −1.64385
\(743\) −9.13810e35 −1.18439 −0.592197 0.805794i \(-0.701739\pi\)
−0.592197 + 0.805794i \(0.701739\pi\)
\(744\) −4.29239e34 −0.0547063
\(745\) −3.38465e35 −0.424190
\(746\) 3.54445e35 0.436831
\(747\) −6.03538e35 −0.731471
\(748\) −2.37506e35 −0.283077
\(749\) 2.61951e36 3.07042
\(750\) 4.26490e34 0.0491635
\(751\) 3.01650e35 0.341982 0.170991 0.985273i \(-0.445303\pi\)
0.170991 + 0.985273i \(0.445303\pi\)
\(752\) −1.56416e35 −0.174404
\(753\) −1.00563e36 −1.10281
\(754\) −2.32949e34 −0.0251257
\(755\) 2.20259e35 0.233667
\(756\) −9.08770e35 −0.948269
\(757\) −1.11391e36 −1.14328 −0.571640 0.820504i \(-0.693693\pi\)
−0.571640 + 0.820504i \(0.693693\pi\)
\(758\) −5.34492e35 −0.539605
\(759\) −1.44187e36 −1.43187
\(760\) 1.45397e35 0.142031
\(761\) −8.13224e35 −0.781451 −0.390726 0.920507i \(-0.627776\pi\)
−0.390726 + 0.920507i \(0.627776\pi\)
\(762\) −9.00686e34 −0.0851405
\(763\) −2.76428e36 −2.57055
\(764\) 3.58712e35 0.328155
\(765\) −8.24322e34 −0.0741872
\(766\) −1.30669e35 −0.115695
\(767\) −3.08612e35 −0.268826
\(768\) −5.66902e34 −0.0485840
\(769\) −9.19378e35 −0.775202 −0.387601 0.921827i \(-0.626696\pi\)
−0.387601 + 0.921827i \(0.626696\pi\)
\(770\) 8.99925e35 0.746573
\(771\) 7.32601e35 0.597982
\(772\) 4.99955e34 0.0401527
\(773\) 1.53774e36 1.21518 0.607590 0.794251i \(-0.292136\pi\)
0.607590 + 0.794251i \(0.292136\pi\)
\(774\) −6.19361e35 −0.481595
\(775\) 5.20320e34 0.0398106
\(776\) −2.36791e35 −0.178276
\(777\) 3.37587e36 2.50106
\(778\) 7.03786e35 0.513093
\(779\) 5.70091e35 0.409003
\(780\) 4.62006e34 0.0326186
\(781\) −2.72718e36 −1.89486
\(782\) −5.91209e35 −0.404256
\(783\) −3.05285e35 −0.205439
\(784\) 7.75924e35 0.513888
\(785\) −6.40449e35 −0.417459
\(786\) −4.54877e35 −0.291818
\(787\) 1.78317e36 1.12592 0.562960 0.826484i \(-0.309663\pi\)
0.562960 + 0.826484i \(0.309663\pi\)
\(788\) 6.89359e35 0.428418
\(789\) 7.11474e35 0.435208
\(790\) 4.99401e35 0.300684
\(791\) 1.67137e36 0.990527
\(792\) −3.23932e35 −0.188968
\(793\) −4.66435e34 −0.0267841
\(794\) 5.93542e35 0.335502
\(795\) 8.30900e35 0.462338
\(796\) −8.96584e35 −0.491109
\(797\) 4.10600e35 0.221406 0.110703 0.993854i \(-0.464690\pi\)
0.110703 + 0.993854i \(0.464690\pi\)
\(798\) −1.62590e36 −0.863093
\(799\) 5.59576e35 0.292432
\(800\) 6.87195e34 0.0353553
\(801\) −6.94488e35 −0.351770
\(802\) 2.65055e36 1.32177
\(803\) −2.97090e35 −0.145862
\(804\) −5.12369e35 −0.247675
\(805\) 2.24013e36 1.06616
\(806\) 5.63649e34 0.0264132
\(807\) −6.73711e35 −0.310853
\(808\) 9.33241e34 0.0423986
\(809\) −2.45266e36 −1.09719 −0.548593 0.836090i \(-0.684836\pi\)
−0.548593 + 0.836090i \(0.684836\pi\)
\(810\) 3.21371e35 0.141561
\(811\) −3.62915e36 −1.57414 −0.787072 0.616861i \(-0.788404\pi\)
−0.787072 + 0.616861i \(0.788404\pi\)
\(812\) 3.87464e35 0.165494
\(813\) 2.03707e35 0.0856790
\(814\) 4.24407e36 1.75783
\(815\) −2.89279e35 −0.117990
\(816\) 2.02809e35 0.0814630
\(817\) −3.90824e36 −1.54599
\(818\) −6.13193e35 −0.238880
\(819\) 3.38351e35 0.129813
\(820\) 2.69445e35 0.101811
\(821\) 4.84702e36 1.80379 0.901894 0.431957i \(-0.142177\pi\)
0.901894 + 0.431957i \(0.142177\pi\)
\(822\) −1.30188e36 −0.477171
\(823\) 3.60517e36 1.30145 0.650726 0.759312i \(-0.274465\pi\)
0.650726 + 0.759312i \(0.274465\pi\)
\(824\) −1.24621e36 −0.443101
\(825\) −5.99577e35 −0.209976
\(826\) 5.13315e36 1.77065
\(827\) −1.03992e36 −0.353331 −0.176665 0.984271i \(-0.556531\pi\)
−0.176665 + 0.984271i \(0.556531\pi\)
\(828\) −8.06343e35 −0.269861
\(829\) 3.59238e36 1.18427 0.592134 0.805839i \(-0.298286\pi\)
0.592134 + 0.805839i \(0.298286\pi\)
\(830\) −1.79998e36 −0.584508
\(831\) −4.10853e36 −1.31424
\(832\) 7.44421e34 0.0234572
\(833\) −2.77587e36 −0.861660
\(834\) −2.89123e36 −0.884111
\(835\) −1.82522e36 −0.549838
\(836\) −2.04405e36 −0.606613
\(837\) 7.38676e35 0.215966
\(838\) 2.55401e36 0.735652
\(839\) 4.65321e36 1.32047 0.660234 0.751060i \(-0.270457\pi\)
0.660234 + 0.751060i \(0.270457\pi\)
\(840\) −7.68456e35 −0.214846
\(841\) −3.50020e36 −0.964146
\(842\) 1.78533e36 0.484526
\(843\) −5.08037e35 −0.135847
\(844\) 8.01860e35 0.211260
\(845\) 1.66209e36 0.431465
\(846\) 7.63200e35 0.195213
\(847\) −5.71585e36 −1.44058
\(848\) 1.33881e36 0.332485
\(849\) −3.56380e36 −0.872102
\(850\) −2.45844e35 −0.0592820
\(851\) 1.05645e37 2.51032
\(852\) 2.32877e36 0.545296
\(853\) −5.05930e36 −1.16742 −0.583710 0.811962i \(-0.698400\pi\)
−0.583710 + 0.811962i \(0.698400\pi\)
\(854\) 7.75823e35 0.176417
\(855\) −7.09435e35 −0.158978
\(856\) −2.81209e36 −0.621023
\(857\) −2.18945e36 −0.476513 −0.238257 0.971202i \(-0.576576\pi\)
−0.238257 + 0.971202i \(0.576576\pi\)
\(858\) −6.49506e35 −0.139313
\(859\) −5.91491e36 −1.25035 −0.625177 0.780483i \(-0.714973\pi\)
−0.625177 + 0.780483i \(0.714973\pi\)
\(860\) −1.84717e36 −0.384836
\(861\) −3.01307e36 −0.618685
\(862\) −3.93464e36 −0.796278
\(863\) 3.85509e36 0.768952 0.384476 0.923135i \(-0.374382\pi\)
0.384476 + 0.923135i \(0.374382\pi\)
\(864\) 9.75581e35 0.191797
\(865\) 8.19818e35 0.158861
\(866\) 2.66362e36 0.508744
\(867\) 3.40352e36 0.640751
\(868\) −9.37520e35 −0.173974
\(869\) −7.02078e36 −1.28422
\(870\) −2.58149e35 −0.0465457
\(871\) 6.72810e35 0.119582
\(872\) 2.96751e36 0.519919
\(873\) 1.15538e36 0.199547
\(874\) −5.08811e36 −0.866291
\(875\) 9.31516e35 0.156347
\(876\) 2.53688e35 0.0419758
\(877\) −5.04839e36 −0.823489 −0.411744 0.911299i \(-0.635080\pi\)
−0.411744 + 0.911299i \(0.635080\pi\)
\(878\) −5.20190e36 −0.836528
\(879\) 3.50445e36 0.555596
\(880\) −9.66086e35 −0.151002
\(881\) 7.50642e36 1.15673 0.578367 0.815776i \(-0.303690\pi\)
0.578367 + 0.815776i \(0.303690\pi\)
\(882\) −3.78597e36 −0.575201
\(883\) 1.15945e37 1.73677 0.868384 0.495893i \(-0.165159\pi\)
0.868384 + 0.495893i \(0.165159\pi\)
\(884\) −2.66316e35 −0.0393318
\(885\) −3.41997e36 −0.498003
\(886\) 1.46600e36 0.210481
\(887\) 1.11924e37 1.58445 0.792226 0.610228i \(-0.208922\pi\)
0.792226 + 0.610228i \(0.208922\pi\)
\(888\) −3.62406e36 −0.505864
\(889\) −1.96723e36 −0.270759
\(890\) −2.07122e36 −0.281094
\(891\) −4.51796e36 −0.604604
\(892\) 7.46919e36 0.985627
\(893\) 4.81587e36 0.626660
\(894\) −4.06315e36 −0.521367
\(895\) −1.53966e36 −0.194822
\(896\) −1.23820e36 −0.154504
\(897\) −1.61677e36 −0.198950
\(898\) −1.18483e36 −0.143781
\(899\) −3.14943e35 −0.0376908
\(900\) −3.35303e35 −0.0395737
\(901\) −4.78960e36 −0.557493
\(902\) −3.78796e36 −0.434835
\(903\) 2.06560e37 2.33856
\(904\) −1.79425e36 −0.200344
\(905\) −2.93913e36 −0.323677
\(906\) 2.64413e36 0.287197
\(907\) 1.70146e36 0.182276 0.0911381 0.995838i \(-0.470950\pi\)
0.0911381 + 0.995838i \(0.470950\pi\)
\(908\) −3.54543e36 −0.374624
\(909\) −4.55357e35 −0.0474573
\(910\) 1.00909e36 0.103732
\(911\) −1.90683e36 −0.193344 −0.0966721 0.995316i \(-0.530820\pi\)
−0.0966721 + 0.995316i \(0.530820\pi\)
\(912\) 1.74543e36 0.174569
\(913\) 2.53048e37 2.49642
\(914\) 1.04842e37 1.02025
\(915\) −5.16894e35 −0.0496178
\(916\) 7.79705e36 0.738307
\(917\) −9.93518e36 −0.928024
\(918\) −3.49014e36 −0.321595
\(919\) −1.39528e37 −1.26829 −0.634145 0.773214i \(-0.718648\pi\)
−0.634145 + 0.773214i \(0.718648\pi\)
\(920\) −2.40482e36 −0.215642
\(921\) 1.67621e37 1.48280
\(922\) −3.24815e35 −0.0283465
\(923\) −3.05800e36 −0.263279
\(924\) 1.08033e37 0.917604
\(925\) 4.39306e36 0.368125
\(926\) 1.35558e36 0.112070
\(927\) 6.08066e36 0.495968
\(928\) −4.15950e35 −0.0334728
\(929\) 3.87552e36 0.307704 0.153852 0.988094i \(-0.450832\pi\)
0.153852 + 0.988094i \(0.450832\pi\)
\(930\) 6.24624e35 0.0489308
\(931\) −2.38899e37 −1.84647
\(932\) 8.74542e36 0.666932
\(933\) −9.61853e36 −0.723749
\(934\) −1.21324e37 −0.900763
\(935\) 3.45617e36 0.253192
\(936\) −3.63226e35 −0.0262560
\(937\) −7.59791e36 −0.541938 −0.270969 0.962588i \(-0.587344\pi\)
−0.270969 + 0.962588i \(0.587344\pi\)
\(938\) −1.11909e37 −0.787642
\(939\) −1.61500e37 −1.12164
\(940\) 2.27615e36 0.155992
\(941\) −2.56881e37 −1.73725 −0.868624 0.495472i \(-0.834995\pi\)
−0.868624 + 0.495472i \(0.834995\pi\)
\(942\) −7.68835e36 −0.513094
\(943\) −9.42913e36 −0.620977
\(944\) −5.51053e36 −0.358133
\(945\) 1.32243e37 0.848157
\(946\) 2.59682e37 1.64363
\(947\) 1.90718e37 1.19129 0.595645 0.803247i \(-0.296896\pi\)
0.595645 + 0.803247i \(0.296896\pi\)
\(948\) 5.99512e36 0.369568
\(949\) −3.33127e35 −0.0202667
\(950\) −2.11580e36 −0.127037
\(951\) −3.45889e35 −0.0204965
\(952\) 4.42965e36 0.259064
\(953\) −1.68185e36 −0.0970791 −0.0485396 0.998821i \(-0.515457\pi\)
−0.0485396 + 0.998821i \(0.515457\pi\)
\(954\) −6.53247e36 −0.372154
\(955\) −5.21994e36 −0.293510
\(956\) −1.62406e37 −0.901319
\(957\) 3.62916e36 0.198796
\(958\) 6.82086e36 0.368783
\(959\) −2.84350e37 −1.51747
\(960\) 8.24952e35 0.0434548
\(961\) −1.84707e37 −0.960378
\(962\) 4.75889e36 0.244240
\(963\) 1.37211e37 0.695119
\(964\) −2.18492e36 −0.109263
\(965\) −7.27530e35 −0.0359137
\(966\) 2.68919e37 1.31041
\(967\) −4.14643e36 −0.199454 −0.0997271 0.995015i \(-0.531797\pi\)
−0.0997271 + 0.995015i \(0.531797\pi\)
\(968\) 6.13607e36 0.291373
\(969\) −6.24428e36 −0.292708
\(970\) 3.44576e36 0.159455
\(971\) 2.14239e37 0.978720 0.489360 0.872082i \(-0.337230\pi\)
0.489360 + 0.872082i \(0.337230\pi\)
\(972\) −8.17066e36 −0.368493
\(973\) −6.31487e37 −2.81160
\(974\) −2.47068e37 −1.08600
\(975\) −6.72307e35 −0.0291749
\(976\) −8.32861e35 −0.0356820
\(977\) −1.15529e37 −0.488660 −0.244330 0.969692i \(-0.578568\pi\)
−0.244330 + 0.969692i \(0.578568\pi\)
\(978\) −3.47268e36 −0.145020
\(979\) 2.91181e37 1.20055
\(980\) −1.12912e37 −0.459635
\(981\) −1.44794e37 −0.581952
\(982\) 1.07374e37 0.426096
\(983\) −5.38686e36 −0.211065 −0.105533 0.994416i \(-0.533655\pi\)
−0.105533 + 0.994416i \(0.533655\pi\)
\(984\) 3.23458e36 0.125135
\(985\) −1.00315e37 −0.383189
\(986\) 1.48806e36 0.0561254
\(987\) −2.54530e37 −0.947927
\(988\) −2.29199e36 −0.0842852
\(989\) 6.46410e37 2.34722
\(990\) 4.71383e36 0.169018
\(991\) 3.50366e37 1.24051 0.620256 0.784399i \(-0.287029\pi\)
0.620256 + 0.784399i \(0.287029\pi\)
\(992\) 1.00644e36 0.0351880
\(993\) 3.50508e37 1.21013
\(994\) 5.08638e37 1.73412
\(995\) 1.30470e37 0.439261
\(996\) −2.16080e37 −0.718412
\(997\) 4.42953e37 1.45435 0.727174 0.686453i \(-0.240833\pi\)
0.727174 + 0.686453i \(0.240833\pi\)
\(998\) −3.29431e37 −1.06815
\(999\) 6.23664e37 1.99702
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.26.a.d.1.1 2
5.2 odd 4 50.26.b.d.49.4 4
5.3 odd 4 50.26.b.d.49.1 4
5.4 even 2 50.26.a.d.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.26.a.d.1.1 2 1.1 even 1 trivial
50.26.a.d.1.2 2 5.4 even 2
50.26.b.d.49.1 4 5.3 odd 4
50.26.b.d.49.4 4 5.2 odd 4