Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1008,2,Mod(1,1008)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1008, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1008.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1008.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(8.04892052375\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 14) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 1008.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −1.00000 | −0.377964 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −4.00000 | −1.10940 | −0.554700 | − | 0.832050i | \(-0.687167\pi\) | ||||
−0.554700 | + | 0.832050i | \(0.687167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −6.00000 | −1.45521 | −0.727607 | − | 0.685994i | \(-0.759367\pi\) | ||||
−0.727607 | + | 0.685994i | \(0.759367\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −2.00000 | −0.458831 | −0.229416 | − | 0.973329i | \(-0.573682\pi\) | ||||
−0.229416 | + | 0.973329i | \(0.573682\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −5.00000 | −1.00000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 4.00000 | 0.718421 | 0.359211 | − | 0.933257i | \(-0.383046\pi\) | ||||
0.359211 | + | 0.933257i | \(0.383046\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.00000 | 0.328798 | 0.164399 | − | 0.986394i | \(-0.447432\pi\) | ||||
0.164399 | + | 0.986394i | \(0.447432\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −6.00000 | −0.937043 | −0.468521 | − | 0.883452i | \(-0.655213\pi\) | ||||
−0.468521 | + | 0.883452i | \(0.655213\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −8.00000 | −1.21999 | −0.609994 | − | 0.792406i | \(-0.708828\pi\) | ||||
−0.609994 | + | 0.792406i | \(0.708828\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −12.0000 | −1.75038 | −0.875190 | − | 0.483779i | \(-0.839264\pi\) | ||||
−0.875190 | + | 0.483779i | \(0.839264\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 1.00000 | 0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −6.00000 | −0.824163 | −0.412082 | − | 0.911147i | \(-0.635198\pi\) | ||||
−0.412082 | + | 0.911147i | \(0.635198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −6.00000 | −0.781133 | −0.390567 | − | 0.920575i | \(-0.627721\pi\) | ||||
−0.390567 | + | 0.920575i | \(0.627721\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 8.00000 | 1.02430 | 0.512148 | − | 0.858898i | \(-0.328850\pi\) | ||||
0.512148 | + | 0.858898i | \(0.328850\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 4.00000 | 0.488678 | 0.244339 | − | 0.969690i | \(-0.421429\pi\) | ||||
0.244339 | + | 0.969690i | \(0.421429\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000 | 0.234082 | 0.117041 | − | 0.993127i | \(-0.462659\pi\) | ||||
0.117041 | + | 0.993127i | \(0.462659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −8.00000 | −0.900070 | −0.450035 | − | 0.893011i | \(-0.648589\pi\) | ||||
−0.450035 | + | 0.893011i | \(0.648589\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −6.00000 | −0.658586 | −0.329293 | − | 0.944228i | \(-0.606810\pi\) | ||||
−0.329293 | + | 0.944228i | \(0.606810\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 6.00000 | 0.635999 | 0.317999 | − | 0.948091i | \(-0.396989\pi\) | ||||
0.317999 | + | 0.948091i | \(0.396989\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 4.00000 | 0.419314 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −10.0000 | −1.01535 | −0.507673 | − | 0.861550i | \(-0.669494\pi\) | ||||
−0.507673 | + | 0.861550i | \(0.669494\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 4.00000 | 0.394132 | 0.197066 | − | 0.980390i | \(-0.436859\pi\) | ||||
0.197066 | + | 0.980390i | \(0.436859\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000 | 1.16008 | 0.580042 | − | 0.814587i | \(-0.303036\pi\) | ||||
0.580042 | + | 0.814587i | \(0.303036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 2.00000 | 0.191565 | 0.0957826 | − | 0.995402i | \(-0.469465\pi\) | ||||
0.0957826 | + | 0.995402i | \(0.469465\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −6.00000 | −0.564433 | −0.282216 | − | 0.959351i | \(-0.591070\pi\) | ||||
−0.282216 | + | 0.959351i | \(0.591070\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 6.00000 | 0.550019 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 16.0000 | 1.41977 | 0.709885 | − | 0.704317i | \(-0.248747\pi\) | ||||
0.709885 | + | 0.704317i | \(0.248747\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 18.0000 | 1.57267 | 0.786334 | − | 0.617802i | \(-0.211977\pi\) | ||||
0.786334 | + | 0.617802i | \(0.211977\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 2.00000 | 0.173422 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −18.0000 | −1.53784 | −0.768922 | − | 0.639343i | \(-0.779207\pi\) | ||||
−0.768922 | + | 0.639343i | \(0.779207\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −14.0000 | −1.18746 | −0.593732 | − | 0.804663i | \(-0.702346\pi\) | ||||
−0.593732 | + | 0.804663i | \(0.702346\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 18.0000 | 1.47462 | 0.737309 | − | 0.675556i | \(-0.236096\pi\) | ||||
0.737309 | + | 0.675556i | \(0.236096\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −8.00000 | −0.651031 | −0.325515 | − | 0.945537i | \(-0.605538\pi\) | ||||
−0.325515 | + | 0.945537i | \(0.605538\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −4.00000 | −0.319235 | −0.159617 | − | 0.987179i | \(-0.551026\pi\) | ||||
−0.159617 | + | 0.987179i | \(0.551026\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 16.0000 | 1.25322 | 0.626608 | − | 0.779334i | \(-0.284443\pi\) | ||||
0.626608 | + | 0.779334i | \(0.284443\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −12.0000 | −0.928588 | −0.464294 | − | 0.885681i | \(-0.653692\pi\) | ||||
−0.464294 | + | 0.885681i | \(0.653692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 3.00000 | 0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 12.0000 | 0.912343 | 0.456172 | − | 0.889892i | \(-0.349220\pi\) | ||||
0.456172 | + | 0.889892i | \(0.349220\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 5.00000 | 0.377964 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 20.0000 | 1.48659 | 0.743294 | − | 0.668965i | \(-0.233262\pi\) | ||||
0.743294 | + | 0.668965i | \(0.233262\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 24.0000 | 1.73658 | 0.868290 | − | 0.496058i | \(-0.165220\pi\) | ||||
0.868290 | + | 0.496058i | \(0.165220\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 14.0000 | 1.00774 | 0.503871 | − | 0.863779i | \(-0.331909\pi\) | ||||
0.503871 | + | 0.863779i | \(0.331909\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 18.0000 | 1.28245 | 0.641223 | − | 0.767354i | \(-0.278427\pi\) | ||||
0.641223 | + | 0.767354i | \(0.278427\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −20.0000 | −1.41776 | −0.708881 | − | 0.705328i | \(-0.750800\pi\) | ||||
−0.708881 | + | 0.705328i | \(0.750800\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −6.00000 | −0.421117 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 4.00000 | 0.275371 | 0.137686 | − | 0.990476i | \(-0.456034\pi\) | ||||
0.137686 | + | 0.990476i | \(0.456034\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −4.00000 | −0.271538 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 24.0000 | 1.61441 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −8.00000 | −0.535720 | −0.267860 | − | 0.963458i | \(-0.586316\pi\) | ||||
−0.267860 | + | 0.963458i | \(0.586316\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 18.0000 | 1.19470 | 0.597351 | − | 0.801980i | \(-0.296220\pi\) | ||||
0.597351 | + | 0.801980i | \(0.296220\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −4.00000 | −0.264327 | −0.132164 | − | 0.991228i | \(-0.542192\pi\) | ||||
−0.132164 | + | 0.991228i | \(0.542192\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 6.00000 | 0.393073 | 0.196537 | − | 0.980497i | \(-0.437031\pi\) | ||||
0.196537 | + | 0.980497i | \(0.437031\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 24.0000 | 1.55243 | 0.776215 | − | 0.630468i | \(-0.217137\pi\) | ||||
0.776215 | + | 0.630468i | \(0.217137\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −10.0000 | −0.644157 | −0.322078 | − | 0.946713i | \(-0.604381\pi\) | ||||
−0.322078 | + | 0.946713i | \(0.604381\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 8.00000 | 0.509028 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −18.0000 | −1.13615 | −0.568075 | − | 0.822977i | \(-0.692312\pi\) | ||||
−0.568075 | + | 0.822977i | \(0.692312\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −18.0000 | −1.12281 | −0.561405 | − | 0.827541i | \(-0.689739\pi\) | ||||
−0.561405 | + | 0.827541i | \(0.689739\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −2.00000 | −0.124274 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 12.0000 | 0.731653 | 0.365826 | − | 0.930683i | \(-0.380786\pi\) | ||||
0.365826 | + | 0.930683i | \(0.380786\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 16.0000 | 0.971931 | 0.485965 | − | 0.873978i | \(-0.338468\pi\) | ||||
0.485965 | + | 0.873978i | \(0.338468\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −10.0000 | −0.600842 | −0.300421 | − | 0.953807i | \(-0.597127\pi\) | ||||
−0.300421 | + | 0.953807i | \(0.597127\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 6.00000 | 0.357930 | 0.178965 | − | 0.983855i | \(-0.442725\pi\) | ||||
0.178965 | + | 0.983855i | \(0.442725\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 22.0000 | 1.30776 | 0.653882 | − | 0.756596i | \(-0.273139\pi\) | ||||
0.653882 | + | 0.756596i | \(0.273139\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 6.00000 | 0.354169 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 19.0000 | 1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −24.0000 | −1.40209 | −0.701047 | − | 0.713115i | \(-0.747284\pi\) | ||||
−0.701047 | + | 0.713115i | \(0.747284\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 8.00000 | 0.461112 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −2.00000 | −0.114146 | −0.0570730 | − | 0.998370i | \(-0.518177\pi\) | ||||
−0.0570730 | + | 0.998370i | \(0.518177\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −24.0000 | −1.36092 | −0.680458 | − | 0.732787i | \(-0.738219\pi\) | ||||
−0.680458 | + | 0.732787i | \(0.738219\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −10.0000 | −0.565233 | −0.282617 | − | 0.959233i | \(-0.591202\pi\) | ||||
−0.282617 | + | 0.959233i | \(0.591202\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −6.00000 | −0.336994 | −0.168497 | − | 0.985702i | \(-0.553891\pi\) | ||||
−0.168497 | + | 0.985702i | \(0.553891\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 12.0000 | 0.667698 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 20.0000 | 1.10940 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 12.0000 | 0.661581 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −8.00000 | −0.439720 | −0.219860 | − | 0.975531i | \(-0.570560\pi\) | ||||
−0.219860 | + | 0.975531i | \(0.570560\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 14.0000 | 0.762629 | 0.381314 | − | 0.924445i | \(-0.375472\pi\) | ||||
0.381314 | + | 0.924445i | \(0.375472\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −1.00000 | −0.0539949 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −24.0000 | −1.28839 | −0.644194 | − | 0.764862i | \(-0.722807\pi\) | ||||
−0.644194 | + | 0.764862i | \(0.722807\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −28.0000 | −1.49881 | −0.749403 | − | 0.662114i | \(-0.769659\pi\) | ||||
−0.749403 | + | 0.662114i | \(0.769659\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −18.0000 | −0.958043 | −0.479022 | − | 0.877803i | \(-0.659008\pi\) | ||||
−0.479022 | + | 0.877803i | \(0.659008\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −24.0000 | −1.26667 | −0.633336 | − | 0.773877i | \(-0.718315\pi\) | ||||
−0.633336 | + | 0.773877i | \(0.718315\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −15.0000 | −0.789474 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −8.00000 | −0.417597 | −0.208798 | − | 0.977959i | \(-0.566955\pi\) | ||||
−0.208798 | + | 0.977959i | \(0.566955\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 6.00000 | 0.311504 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 14.0000 | 0.724893 | 0.362446 | − | 0.932005i | \(-0.381942\pi\) | ||||
0.362446 | + | 0.932005i | \(0.381942\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −24.0000 | −1.23606 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 16.0000 | 0.821865 | 0.410932 | − | 0.911666i | \(-0.365203\pi\) | ||||
0.410932 | + | 0.911666i | \(0.365203\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 36.0000 | 1.83951 | 0.919757 | − | 0.392488i | \(-0.128386\pi\) | ||||
0.919757 | + | 0.392488i | \(0.128386\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −18.0000 | −0.912636 | −0.456318 | − | 0.889817i | \(-0.650832\pi\) | ||||
−0.456318 | + | 0.889817i | \(0.650832\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 20.0000 | 1.00377 | 0.501886 | − | 0.864934i | \(-0.332640\pi\) | ||||
0.501886 | + | 0.864934i | \(0.332640\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 18.0000 | 0.898877 | 0.449439 | − | 0.893311i | \(-0.351624\pi\) | ||||
0.449439 | + | 0.893311i | \(0.351624\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −16.0000 | −0.797017 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 14.0000 | 0.692255 | 0.346128 | − | 0.938187i | \(-0.387496\pi\) | ||||
0.346128 | + | 0.938187i | \(0.387496\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 6.00000 | 0.295241 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 6.00000 | 0.293119 | 0.146560 | − | 0.989202i | \(-0.453180\pi\) | ||||
0.146560 | + | 0.989202i | \(0.453180\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −10.0000 | −0.487370 | −0.243685 | − | 0.969854i | \(-0.578356\pi\) | ||||
−0.243685 | + | 0.969854i | \(0.578356\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 30.0000 | 1.45521 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −8.00000 | −0.387147 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 24.0000 | 1.15604 | 0.578020 | − | 0.816023i | \(-0.303826\pi\) | ||||
0.578020 | + | 0.816023i | \(0.303826\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −34.0000 | −1.63394 | −0.816968 | − | 0.576683i | \(-0.804347\pi\) | ||||
−0.816968 | + | 0.576683i | \(0.804347\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −8.00000 | −0.381819 | −0.190910 | − | 0.981608i | \(-0.561144\pi\) | ||||
−0.190910 | + | 0.981608i | \(0.561144\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −12.0000 | −0.570137 | −0.285069 | − | 0.958507i | \(-0.592016\pi\) | ||||
−0.285069 | + | 0.958507i | \(0.592016\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −18.0000 | −0.849473 | −0.424736 | − | 0.905317i | \(-0.639633\pi\) | ||||
−0.424736 | + | 0.905317i | \(0.639633\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −10.0000 | −0.467780 | −0.233890 | − | 0.972263i | \(-0.575146\pi\) | ||||
−0.233890 | + | 0.972263i | \(0.575146\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −12.0000 | −0.558896 | −0.279448 | − | 0.960161i | \(-0.590151\pi\) | ||||
−0.279448 | + | 0.960161i | \(0.590151\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −32.0000 | −1.48717 | −0.743583 | − | 0.668644i | \(-0.766875\pi\) | ||||
−0.743583 | + | 0.668644i | \(0.766875\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −6.00000 | −0.277647 | −0.138823 | − | 0.990317i | \(-0.544332\pi\) | ||||
−0.138823 | + | 0.990317i | \(0.544332\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −4.00000 | −0.184703 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 10.0000 | 0.458831 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −36.0000 | −1.64488 | −0.822441 | − | 0.568850i | \(-0.807388\pi\) | ||||
−0.822441 | + | 0.568850i | \(0.807388\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −8.00000 | −0.364769 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 16.0000 | 0.725029 | 0.362515 | − | 0.931978i | \(-0.381918\pi\) | ||||
0.362515 | + | 0.931978i | \(0.381918\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −12.0000 | −0.541552 | −0.270776 | − | 0.962642i | \(-0.587280\pi\) | ||||
−0.270776 | + | 0.962642i | \(0.587280\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −36.0000 | −1.62136 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 4.00000 | 0.179065 | 0.0895323 | − | 0.995984i | \(-0.471463\pi\) | ||||
0.0895323 | + | 0.995984i | \(0.471463\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −36.0000 | −1.59567 | −0.797836 | − | 0.602875i | \(-0.794022\pi\) | ||||
−0.797836 | + | 0.602875i | \(0.794022\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −2.00000 | −0.0884748 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −6.00000 | −0.262865 | −0.131432 | − | 0.991325i | \(-0.541958\pi\) | ||||
−0.131432 | + | 0.991325i | \(0.541958\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −2.00000 | −0.0874539 | −0.0437269 | − | 0.999044i | \(-0.513923\pi\) | ||||
−0.0437269 | + | 0.999044i | \(0.513923\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −24.0000 | −1.04546 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −23.0000 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 24.0000 | 1.03956 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 38.0000 | 1.63375 | 0.816874 | − | 0.576816i | \(-0.195705\pi\) | ||||
0.816874 | + | 0.576816i | \(0.195705\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −8.00000 | −0.342055 | −0.171028 | − | 0.985266i | \(-0.554709\pi\) | ||||
−0.171028 | + | 0.985266i | \(0.554709\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −12.0000 | −0.511217 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 8.00000 | 0.340195 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −6.00000 | −0.254228 | −0.127114 | − | 0.991888i | \(-0.540571\pi\) | ||||
−0.127114 | + | 0.991888i | \(0.540571\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 32.0000 | 1.35346 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 30.0000 | 1.26435 | 0.632175 | − | 0.774826i | \(-0.282163\pi\) | ||||
0.632175 | + | 0.774826i | \(0.282163\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −6.00000 | −0.251533 | −0.125767 | − | 0.992060i | \(-0.540139\pi\) | ||||
−0.125767 | + | 0.992060i | \(0.540139\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −32.0000 | −1.33916 | −0.669579 | − | 0.742741i | \(-0.733526\pi\) | ||||
−0.669579 | + | 0.742741i | \(0.733526\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 2.00000 | 0.0832611 | 0.0416305 | − | 0.999133i | \(-0.486745\pi\) | ||||
0.0416305 | + | 0.999133i | \(0.486745\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 6.00000 | 0.248922 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −42.0000 | −1.73353 | −0.866763 | − | 0.498721i | \(-0.833803\pi\) | ||||
−0.866763 | + | 0.498721i | \(0.833803\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −8.00000 | −0.329634 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 6.00000 | 0.246390 | 0.123195 | − | 0.992382i | \(-0.460686\pi\) | ||||
0.123195 | + | 0.992382i | \(0.460686\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −24.0000 | −0.980613 | −0.490307 | − | 0.871550i | \(-0.663115\pi\) | ||||
−0.490307 | + | 0.871550i | \(0.663115\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 26.0000 | 1.06056 | 0.530281 | − | 0.847822i | \(-0.322086\pi\) | ||||
0.530281 | + | 0.847822i | \(0.322086\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −32.0000 | −1.29884 | −0.649420 | − | 0.760430i | \(-0.724988\pi\) | ||||
−0.649420 | + | 0.760430i | \(0.724988\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 48.0000 | 1.94187 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 2.00000 | 0.0807792 | 0.0403896 | − | 0.999184i | \(-0.487140\pi\) | ||||
0.0403896 | + | 0.999184i | \(0.487140\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −6.00000 | −0.241551 | −0.120775 | − | 0.992680i | \(-0.538538\pi\) | ||||
−0.120775 | + | 0.992680i | \(0.538538\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −26.0000 | −1.04503 | −0.522514 | − | 0.852631i | \(-0.675006\pi\) | ||||
−0.522514 | + | 0.852631i | \(0.675006\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | −6.00000 | −0.240385 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 25.0000 | 1.00000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −12.0000 | −0.478471 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 16.0000 | 0.636950 | 0.318475 | − | 0.947931i | \(-0.396829\pi\) | ||||
0.318475 | + | 0.947931i | \(0.396829\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −4.00000 | −0.158486 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 18.0000 | 0.710957 | 0.355479 | − | 0.934684i | \(-0.384318\pi\) | ||||
0.355479 | + | 0.934684i | \(0.384318\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −14.0000 | −0.552106 | −0.276053 | − | 0.961142i | \(-0.589027\pi\) | ||||
−0.276053 | + | 0.961142i | \(0.589027\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −12.0000 | −0.471769 | −0.235884 | − | 0.971781i | \(-0.575799\pi\) | ||||
−0.235884 | + | 0.971781i | \(0.575799\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −18.0000 | −0.704394 | −0.352197 | − | 0.935926i | \(-0.614565\pi\) | ||||
−0.352197 | + | 0.935926i | \(0.614565\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −24.0000 | −0.934907 | −0.467454 | − | 0.884018i | \(-0.654829\pi\) | ||||
−0.467454 | + | 0.884018i | \(0.654829\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −40.0000 | −1.55582 | −0.777910 | − | 0.628376i | \(-0.783720\pi\) | ||||
−0.777910 | + | 0.628376i | \(0.783720\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 26.0000 | 1.00223 | 0.501113 | − | 0.865382i | \(-0.332924\pi\) | ||||
0.501113 | + | 0.865382i | \(0.332924\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 12.0000 | 0.461197 | 0.230599 | − | 0.973049i | \(-0.425932\pi\) | ||||
0.230599 | + | 0.973049i | \(0.425932\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 10.0000 | 0.383765 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −12.0000 | −0.459167 | −0.229584 | − | 0.973289i | \(-0.573736\pi\) | ||||
−0.229584 | + | 0.973289i | \(0.573736\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 24.0000 | 0.914327 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 46.0000 | 1.74992 | 0.874961 | − | 0.484193i | \(-0.160887\pi\) | ||||
0.874961 | + | 0.484193i | \(0.160887\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 36.0000 | 1.36360 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −18.0000 | −0.679851 | −0.339925 | − | 0.940452i | \(-0.610402\pi\) | ||||
−0.339925 | + | 0.940452i | \(0.610402\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −4.00000 | −0.150863 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −46.0000 | −1.72757 | −0.863783 | − | 0.503864i | \(-0.831911\pi\) | ||||
−0.863783 | + | 0.503864i | \(0.831911\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 12.0000 | 0.447524 | 0.223762 | − | 0.974644i | \(-0.428166\pi\) | ||||
0.223762 | + | 0.974644i | \(0.428166\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −4.00000 | −0.148968 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −30.0000 | −1.11417 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −44.0000 | −1.63187 | −0.815935 | − | 0.578144i | \(-0.803777\pi\) | ||||
−0.815935 | + | 0.578144i | \(0.803777\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 48.0000 | 1.77534 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −40.0000 | −1.47743 | −0.738717 | − | 0.674016i | \(-0.764568\pi\) | ||||
−0.738717 | + | 0.674016i | \(0.764568\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 16.0000 | 0.588570 | 0.294285 | − | 0.955718i | \(-0.404919\pi\) | ||||
0.294285 | + | 0.955718i | \(0.404919\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 24.0000 | 0.880475 | 0.440237 | − | 0.897881i | \(-0.354894\pi\) | ||||
0.440237 | + | 0.897881i | \(0.354894\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −12.0000 | −0.438470 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 40.0000 | 1.45962 | 0.729810 | − | 0.683650i | \(-0.239608\pi\) | ||||
0.729810 | + | 0.683650i | \(0.239608\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 2.00000 | 0.0726912 | 0.0363456 | − | 0.999339i | \(-0.488428\pi\) | ||||
0.0363456 | + | 0.999339i | \(0.488428\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 18.0000 | 0.652499 | 0.326250 | − | 0.945284i | \(-0.394215\pi\) | ||||
0.326250 | + | 0.945284i | \(0.394215\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −2.00000 | −0.0724049 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 24.0000 | 0.866590 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 14.0000 | 0.504853 | 0.252426 | − | 0.967616i | \(-0.418771\pi\) | ||||
0.252426 | + | 0.967616i | \(0.418771\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −24.0000 | −0.863220 | −0.431610 | − | 0.902060i | \(-0.642054\pi\) | ||||
−0.431610 | + | 0.902060i | \(0.642054\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −20.0000 | −0.718421 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 12.0000 | 0.429945 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 22.0000 | 0.784215 | 0.392108 | − | 0.919919i | \(-0.371746\pi\) | ||||
0.392108 | + | 0.919919i | \(0.371746\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 6.00000 | 0.213335 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −32.0000 | −1.13635 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 12.0000 | 0.425062 | 0.212531 | − | 0.977154i | \(-0.431829\pi\) | ||||
0.212531 | + | 0.977154i | \(0.431829\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 72.0000 | 2.54718 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −6.00000 | −0.210949 | −0.105474 | − | 0.994422i | \(-0.533636\pi\) | ||||
−0.105474 | + | 0.994422i | \(0.533636\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −2.00000 | −0.0702295 | −0.0351147 | − | 0.999383i | \(-0.511180\pi\) | ||||
−0.0351147 | + | 0.999383i | \(0.511180\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 16.0000 | 0.559769 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −6.00000 | −0.209401 | −0.104701 | − | 0.994504i | \(-0.533388\pi\) | ||||
−0.104701 | + | 0.994504i | \(0.533388\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 40.0000 | 1.39431 | 0.697156 | − | 0.716919i | \(-0.254448\pi\) | ||||
0.697156 | + | 0.716919i | \(0.254448\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −36.0000 | −1.25184 | −0.625921 | − | 0.779886i | \(-0.715277\pi\) | ||||
−0.625921 | + | 0.779886i | \(0.715277\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 56.0000 | 1.94496 | 0.972480 | − | 0.232986i | \(-0.0748495\pi\) | ||||
0.972480 | + | 0.232986i | \(0.0748495\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −6.00000 | −0.207888 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 12.0000 | 0.414286 | 0.207143 | − | 0.978311i | \(-0.433583\pi\) | ||||
0.207143 | + | 0.978311i | \(0.433583\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 11.0000 | 0.377964 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 44.0000 | 1.50653 | 0.753266 | − | 0.657716i | \(-0.228477\pi\) | ||||
0.753266 | + | 0.657716i | \(0.228477\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 18.0000 | 0.614868 | 0.307434 | − | 0.951569i | \(-0.400530\pi\) | ||||
0.307434 | + | 0.951569i | \(0.400530\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −14.0000 | −0.477674 | −0.238837 | − | 0.971060i | \(-0.576766\pi\) | ||||
−0.238837 | + | 0.971060i | \(0.576766\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −24.0000 | −0.816970 | −0.408485 | − | 0.912765i | \(-0.633943\pi\) | ||||
−0.408485 | + | 0.912765i | \(0.633943\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −16.0000 | −0.542139 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −22.0000 | −0.742887 | −0.371444 | − | 0.928456i | \(-0.621137\pi\) | ||||
−0.371444 | + | 0.928456i | \(0.621137\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 54.0000 | 1.81931 | 0.909653 | − | 0.415369i | \(-0.136347\pi\) | ||||
0.909653 | + | 0.415369i | \(0.136347\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −20.0000 | −0.673054 | −0.336527 | − | 0.941674i | \(-0.609252\pi\) | ||||
−0.336527 | + | 0.941674i | \(0.609252\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −36.0000 | −1.20876 | −0.604381 | − | 0.796696i | \(-0.706579\pi\) | ||||
−0.604381 | + | 0.796696i | \(0.706579\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −16.0000 | −0.536623 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 24.0000 | 0.803129 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 24.0000 | 0.800445 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 36.0000 | 1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −44.0000 | −1.46100 | −0.730498 | − | 0.682915i | \(-0.760712\pi\) | ||||
−0.730498 | + | 0.682915i | \(0.760712\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 48.0000 | 1.59031 | 0.795155 | − | 0.606406i | \(-0.207389\pi\) | ||||
0.795155 | + | 0.606406i | \(0.207389\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −18.0000 | −0.594412 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −56.0000 | −1.84727 | −0.923635 | − | 0.383274i | \(-0.874797\pi\) | ||||
−0.923635 | + | 0.383274i | \(0.874797\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −10.0000 | −0.328798 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −6.00000 | −0.196854 | −0.0984268 | − | 0.995144i | \(-0.531381\pi\) | ||||
−0.0984268 | + | 0.995144i | \(0.531381\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −2.00000 | −0.0655474 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 2.00000 | 0.0653372 | 0.0326686 | − | 0.999466i | \(-0.489599\pi\) | ||||
0.0326686 | + | 0.999466i | \(0.489599\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 24.0000 | 0.782378 | 0.391189 | − | 0.920310i | \(-0.372064\pi\) | ||||
0.391189 | + | 0.920310i | \(0.372064\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 24.0000 | 0.779895 | 0.389948 | − | 0.920837i | \(-0.372493\pi\) | ||||
0.389948 | + | 0.920837i | \(0.372493\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −8.00000 | −0.259691 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 54.0000 | 1.74923 | 0.874616 | − | 0.484817i | \(-0.161114\pi\) | ||||
0.874616 | + | 0.484817i | \(0.161114\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 18.0000 | 0.581250 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −32.0000 | −1.02905 | −0.514525 | − | 0.857475i | \(-0.672032\pi\) | ||||
−0.514525 | + | 0.857475i | \(0.672032\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −6.00000 | −0.192549 | −0.0962746 | − | 0.995355i | \(-0.530693\pi\) | ||||
−0.0962746 | + | 0.995355i | \(0.530693\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 14.0000 | 0.448819 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 6.00000 | 0.191957 | 0.0959785 | − | 0.995383i | \(-0.469402\pi\) | ||||
0.0959785 | + | 0.995383i | \(0.469402\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −36.0000 | −1.14822 | −0.574111 | − | 0.818778i | \(-0.694652\pi\) | ||||
−0.574111 | + | 0.818778i | \(0.694652\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 16.0000 | 0.508257 | 0.254128 | − | 0.967170i | \(-0.418211\pi\) | ||||
0.254128 | + | 0.967170i | \(0.418211\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 8.00000 | 0.253363 | 0.126681 | − | 0.991943i | \(-0.459567\pi\) | ||||
0.126681 | + | 0.991943i | \(0.459567\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))