Properties

Label 1035.1.bd.a.244.1
Level $1035$
Weight $1$
Character 1035.244
Analytic conductor $0.517$
Analytic rank $0$
Dimension $10$
Projective image $D_{22}$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1035,1,Mod(19,1035)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1035, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 11, 15]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1035.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1035 = 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1035.bd (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.516532288075\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{22}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{22} - \cdots)\)

Embedding invariants

Embedding label 244.1
Root \(-0.841254 + 0.540641i\) of defining polynomial
Character \(\chi\) \(=\) 1035.244
Dual form 1035.1.bd.a.649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.425839 - 1.45027i) q^{2} +(-1.08070 + 0.694523i) q^{4} +(-0.142315 - 0.989821i) q^{5} +(0.325137 + 0.281733i) q^{8} +(-1.37491 + 0.627899i) q^{10} +(-0.263521 + 0.577031i) q^{16} +(-1.41542 - 0.909632i) q^{17} +(-0.983568 - 1.53046i) q^{19} +(0.841254 + 0.970858i) q^{20} +(0.959493 + 0.281733i) q^{23} +(-0.959493 + 0.281733i) q^{25} +(0.544078 - 0.627899i) q^{31} +(1.37491 + 0.197682i) q^{32} +(-0.716476 + 2.44009i) q^{34} +(-1.80075 + 2.07817i) q^{38} +(0.232593 - 0.361922i) q^{40} -1.51150i q^{46} -0.563465i q^{47} +(0.654861 + 0.755750i) q^{49} +(0.817178 + 1.27155i) q^{50} +(-0.797176 + 1.74557i) q^{53} +(-0.425839 - 0.368991i) q^{61} +(-1.14231 - 0.521678i) q^{62} +(-0.208518 - 1.45027i) q^{64} +2.16140 q^{68} +(2.12588 + 0.970858i) q^{76} +(1.80075 - 0.822373i) q^{79} +(0.608660 + 0.178719i) q^{80} +(0.186393 - 1.29639i) q^{83} +(-0.698939 + 1.53046i) q^{85} +(-1.23259 + 0.361922i) q^{92} +(-0.817178 + 0.239945i) q^{94} +(-1.37491 + 1.19136i) q^{95} +(0.817178 - 1.27155i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{4} - q^{5} + 11 q^{8} - q^{16} - 9 q^{17} - q^{20} + q^{23} - q^{25} + 2 q^{31} - 11 q^{34} - 11 q^{40} + q^{49} - 2 q^{53} - 11 q^{62} + 10 q^{64} + 2 q^{68} + 11 q^{76} + 10 q^{80} - 2 q^{83}+ \cdots + q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1035\mathbb{Z}\right)^\times\).

\(n\) \(461\) \(622\) \(856\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{21}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.425839 1.45027i −0.425839 1.45027i −0.841254 0.540641i \(-0.818182\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(3\) 0 0
\(4\) −1.08070 + 0.694523i −1.08070 + 0.694523i
\(5\) −0.142315 0.989821i −0.142315 0.989821i
\(6\) 0 0
\(7\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(8\) 0.325137 + 0.281733i 0.325137 + 0.281733i
\(9\) 0 0
\(10\) −1.37491 + 0.627899i −1.37491 + 0.627899i
\(11\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(12\) 0 0
\(13\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.263521 + 0.577031i −0.263521 + 0.577031i
\(17\) −1.41542 0.909632i −1.41542 0.909632i −0.415415 0.909632i \(-0.636364\pi\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) −0.983568 1.53046i −0.983568 1.53046i −0.841254 0.540641i \(-0.818182\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(20\) 0.841254 + 0.970858i 0.841254 + 0.970858i
\(21\) 0 0
\(22\) 0 0
\(23\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(24\) 0 0
\(25\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(30\) 0 0
\(31\) 0.544078 0.627899i 0.544078 0.627899i −0.415415 0.909632i \(-0.636364\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(32\) 1.37491 + 0.197682i 1.37491 + 0.197682i
\(33\) 0 0
\(34\) −0.716476 + 2.44009i −0.716476 + 2.44009i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(38\) −1.80075 + 2.07817i −1.80075 + 2.07817i
\(39\) 0 0
\(40\) 0.232593 0.361922i 0.232593 0.361922i
\(41\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(42\) 0 0
\(43\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 1.51150i 1.51150i
\(47\) 0.563465i 0.563465i −0.959493 0.281733i \(-0.909091\pi\)
0.959493 0.281733i \(-0.0909091\pi\)
\(48\) 0 0
\(49\) 0.654861 + 0.755750i 0.654861 + 0.755750i
\(50\) 0.817178 + 1.27155i 0.817178 + 1.27155i
\(51\) 0 0
\(52\) 0 0
\(53\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(60\) 0 0
\(61\) −0.425839 0.368991i −0.425839 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(62\) −1.14231 0.521678i −1.14231 0.521678i
\(63\) 0 0
\(64\) −0.208518 1.45027i −0.208518 1.45027i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(68\) 2.16140 2.16140
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(72\) 0 0
\(73\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 2.12588 + 0.970858i 2.12588 + 0.970858i
\(77\) 0 0
\(78\) 0 0
\(79\) 1.80075 0.822373i 1.80075 0.822373i 0.841254 0.540641i \(-0.181818\pi\)
0.959493 0.281733i \(-0.0909091\pi\)
\(80\) 0.608660 + 0.178719i 0.608660 + 0.178719i
\(81\) 0 0
\(82\) 0 0
\(83\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(84\) 0 0
\(85\) −0.698939 + 1.53046i −0.698939 + 1.53046i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.23259 + 0.361922i −1.23259 + 0.361922i
\(93\) 0 0
\(94\) −0.817178 + 0.239945i −0.817178 + 0.239945i
\(95\) −1.37491 + 1.19136i −1.37491 + 1.19136i
\(96\) 0 0
\(97\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(98\) 0.817178 1.27155i 0.817178 1.27155i
\(99\) 0 0
\(100\) 0.841254 0.970858i 0.841254 0.970858i
\(101\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(102\) 0 0
\(103\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.87102 + 0.412791i 2.87102 + 0.412791i
\(107\) −0.186393 + 0.215109i −0.186393 + 0.215109i −0.841254 0.540641i \(-0.818182\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(108\) 0 0
\(109\) 1.07028 1.66538i 1.07028 1.66538i 0.415415 0.909632i \(-0.363636\pi\)
0.654861 0.755750i \(-0.272727\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(114\) 0 0
\(115\) 0.142315 0.989821i 0.142315 0.989821i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(122\) −0.353799 + 0.774713i −0.353799 + 0.774713i
\(123\) 0 0
\(124\) −0.151894 + 1.05645i −0.151894 + 1.05645i
\(125\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(126\) 0 0
\(127\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(128\) −0.750975 + 0.342959i −0.750975 + 0.342959i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.203930 0.694523i −0.203930 0.694523i
\(137\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(138\) 0 0
\(139\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(150\) 0 0
\(151\) −0.698939 1.53046i −0.698939 1.53046i −0.841254 0.540641i \(-0.818182\pi\)
0.142315 0.989821i \(-0.454545\pi\)
\(152\) 0.111387 0.774713i 0.111387 0.774713i
\(153\) 0 0
\(154\) 0 0
\(155\) −0.698939 0.449181i −0.698939 0.449181i
\(156\) 0 0
\(157\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(158\) −1.95949 2.26138i −1.95949 2.26138i
\(159\) 0 0
\(160\) 1.38905i 1.38905i
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.95949 + 0.281733i −1.95949 + 0.281733i
\(167\) 1.07028 1.66538i 1.07028 1.66538i 0.415415 0.909632i \(-0.363636\pi\)
0.654861 0.755750i \(-0.272727\pi\)
\(168\) 0 0
\(169\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(170\) 2.51722 + 0.361922i 2.51722 + 0.361922i
\(171\) 0 0
\(172\) 0 0
\(173\) 0.158746 0.540641i 0.158746 0.540641i −0.841254 0.540641i \(-0.818182\pi\)
1.00000 \(0\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(180\) 0 0
\(181\) −0.817178 + 0.708089i −0.817178 + 0.708089i −0.959493 0.281733i \(-0.909091\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.232593 + 0.361922i 0.232593 + 0.361922i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0.391340 + 0.608936i 0.391340 + 0.608936i
\(189\) 0 0
\(190\) 2.31329 + 1.48666i 2.31329 + 1.48666i
\(191\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(192\) 0 0
\(193\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.23259 0.361922i −1.23259 0.361922i
\(197\) −1.80075 + 0.822373i −1.80075 + 0.822373i −0.841254 + 0.540641i \(0.818182\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(198\) 0 0
\(199\) −1.14231 0.989821i −1.14231 0.989821i −0.142315 0.989821i \(-0.545455\pi\)
−1.00000 \(\pi\)
\(200\) −0.391340 0.178719i −0.391340 0.178719i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.41542 + 0.909632i −1.41542 + 0.909632i −0.415415 + 0.909632i \(0.636364\pi\)
−1.00000 \(\pi\)
\(212\) −0.350833 2.44009i −0.350833 2.44009i
\(213\) 0 0
\(214\) 0.391340 + 0.178719i 0.391340 + 0.178719i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −2.87102 0.843008i −2.87102 0.843008i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1.07028 1.66538i −1.07028 1.66538i
\(227\) 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i \(0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(228\) 0 0
\(229\) 1.51150i 1.51150i −0.654861 0.755750i \(-0.727273\pi\)
0.654861 0.755750i \(-0.272727\pi\)
\(230\) −1.49611 + 0.215109i −1.49611 + 0.215109i
\(231\) 0 0
\(232\) 0 0
\(233\) 1.49611 1.29639i 1.49611 1.29639i 0.654861 0.755750i \(-0.272727\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(234\) 0 0
\(235\) −0.557730 + 0.0801894i −0.557730 + 0.0801894i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(240\) 0 0
\(241\) −0.304632 + 1.03748i −0.304632 + 1.03748i 0.654861 + 0.755750i \(0.272727\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(242\) 0.425839 1.45027i 0.425839 1.45027i
\(243\) 0 0
\(244\) 0.716476 + 0.103014i 0.716476 + 0.103014i
\(245\) 0.654861 0.755750i 0.654861 0.755750i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.353799 0.0508687i 0.353799 0.0508687i
\(249\) 0 0
\(250\) 1.14231 0.989821i 1.14231 0.989821i
\(251\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.142315 0.164240i −0.142315 0.164240i
\(257\) 0.584585 + 0.909632i 0.584585 + 0.909632i 1.00000 \(0\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 \(0\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(264\) 0 0
\(265\) 1.84125 + 0.540641i 1.84125 + 0.540641i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(270\) 0 0
\(271\) 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(272\) 0.897877 0.577031i 0.897877 0.577031i
\(273\) 0 0
\(274\) −0.121206 0.412791i −0.121206 0.412791i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) −0.817178 2.78305i −0.817178 2.78305i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(282\) 0 0
\(283\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.760554 + 1.66538i 0.760554 + 1.66538i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.10181 + 0.708089i 1.10181 + 0.708089i 0.959493 0.281733i \(-0.0909091\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −1.92195 + 1.66538i −1.92195 + 1.66538i
\(303\) 0 0
\(304\) 1.14231 0.164240i 1.14231 0.164240i
\(305\) −0.304632 + 0.474017i −0.304632 + 0.474017i
\(306\) 0 0
\(307\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.353799 + 1.20493i −0.353799 + 1.20493i
\(311\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(312\) 0 0
\(313\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −1.37491 + 2.13940i −1.37491 + 2.13940i
\(317\) −1.07028 + 0.153882i −1.07028 + 0.153882i −0.654861 0.755750i \(-0.727273\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.40584 + 0.412791i −1.40584 + 0.412791i
\(321\) 0 0
\(322\) 0 0
\(323\) 3.06092i 3.06092i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(332\) 0.698939 + 1.53046i 0.698939 + 1.53046i
\(333\) 0 0
\(334\) −2.87102 0.843008i −2.87102 0.843008i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(338\) 1.37491 + 0.627899i 1.37491 + 0.627899i
\(339\) 0 0
\(340\) −0.307599 2.13940i −0.307599 2.13940i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.851677 −0.851677
\(347\) 0.512546 + 1.74557i 0.512546 + 1.74557i 0.654861 + 0.755750i \(0.272727\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(348\) 0 0
\(349\) −1.10181 + 0.708089i −1.10181 + 0.708089i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.37491 + 1.19136i 1.37491 + 1.19136i 0.959493 + 0.281733i \(0.0909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(360\) 0 0
\(361\) −0.959493 + 2.10100i −0.959493 + 2.10100i
\(362\) 1.37491 + 0.883600i 1.37491 + 0.883600i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −0.415415 + 0.479414i −0.415415 + 0.479414i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.158746 0.183203i 0.158746 0.183203i
\(377\) 0 0
\(378\) 0 0
\(379\) 0.425839 1.45027i 0.425839 1.45027i −0.415415 0.909632i \(-0.636364\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(380\) 0.658432 2.24241i 0.658432 2.24241i
\(381\) 0 0
\(382\) 0 0
\(383\) −0.857685 + 0.989821i −0.857685 + 0.989821i 0.142315 + 0.989821i \(0.454545\pi\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(390\) 0 0
\(391\) −1.10181 1.27155i −1.10181 1.27155i
\(392\) 0.430218i 0.430218i
\(393\) 0 0
\(394\) 1.95949 + 2.26138i 1.95949 + 2.26138i
\(395\) −1.07028 1.66538i −1.07028 1.66538i
\(396\) 0 0
\(397\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(398\) −0.949069 + 2.07817i −0.949069 + 2.07817i
\(399\) 0 0
\(400\) 0.0902783 0.627899i 0.0902783 0.627899i
\(401\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.239446 + 1.66538i 0.239446 + 1.66538i 0.654861 + 0.755750i \(0.272727\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.30972 −1.30972
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(420\) 0 0
\(421\) −1.65486 0.755750i −1.65486 0.755750i −0.654861 0.755750i \(-0.727273\pi\)
−1.00000 \(\pi\)
\(422\) 1.92195 + 1.66538i 1.92195 + 1.66538i
\(423\) 0 0
\(424\) −0.750975 + 0.342959i −0.750975 + 0.342959i
\(425\) 1.61435 + 0.474017i 1.61435 + 0.474017i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.0520365 0.361922i 0.0520365 0.361922i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(432\) 0 0
\(433\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.54311i 2.54311i
\(437\) −0.512546 1.74557i −0.512546 1.74557i
\(438\) 0 0
\(439\) −1.25667 + 0.368991i −1.25667 + 0.368991i −0.841254 0.540641i \(-0.818182\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.584585 0.909632i 0.584585 0.909632i −0.415415 0.909632i \(-0.636364\pi\)
1.00000 \(0\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(453\) 0 0
\(454\) 1.56815 2.44009i 1.56815 2.44009i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(458\) −2.19209 + 0.643655i −2.19209 + 0.643655i
\(459\) 0 0
\(460\) 0.533654 + 1.16854i 0.533654 + 1.16854i
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −2.51722 1.61772i −2.51722 1.61772i
\(467\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0.353799 + 0.774713i 0.353799 + 0.774713i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.37491 + 1.19136i 1.37491 + 1.19136i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.63436 1.63436
\(483\) 0 0
\(484\) −1.28463 −1.28463
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(488\) −0.0344989 0.239945i −0.0344989 0.239945i
\(489\) 0 0
\(490\) −1.37491 0.627899i −1.37491 0.627899i
\(491\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.218941 + 0.479414i 0.218941 + 0.479414i
\(497\) 0 0
\(498\) 0 0
\(499\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(500\) −1.08070 0.694523i −1.08070 0.694523i
\(501\) 0 0
\(502\) 0 0
\(503\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.623933 + 0.970858i −0.623933 + 0.970858i
\(513\) 0 0
\(514\) 1.07028 1.23516i 1.07028 1.23516i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(522\) 0 0
\(523\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.949069 0.822373i 0.949069 0.822373i
\(527\) −1.34125 + 0.393828i −1.34125 + 0.393828i
\(528\) 0 0
\(529\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(530\) 2.90055i 2.90055i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.239446 + 0.153882i 0.239446 + 0.153882i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0.797176 + 0.234072i 0.797176 + 0.234072i 0.654861 0.755750i \(-0.272727\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(542\) 2.63843 1.20493i 2.63843 1.20493i
\(543\) 0 0
\(544\) −1.76625 1.53046i −1.76625 1.53046i
\(545\) −1.80075 0.822373i −1.80075 0.822373i
\(546\) 0 0
\(547\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(548\) −0.307599 + 0.197682i −0.307599 + 0.197682i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −2.07385 + 1.33278i −2.07385 + 1.33278i
\(557\) 0.118239 + 0.822373i 0.118239 + 0.822373i 0.959493 + 0.281733i \(0.0909091\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.84125 0.540641i −1.84125 0.540641i −0.841254 0.540641i \(-0.818182\pi\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) −0.544078 1.19136i −0.544078 1.19136i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(570\) 0 0
\(571\) 0.304632 + 0.474017i 0.304632 + 0.474017i 0.959493 0.281733i \(-0.0909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −1.00000
\(576\) 0 0
\(577\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(578\) 2.09138 1.81219i 2.09138 1.81219i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0.557730 1.89945i 0.557730 1.89945i
\(587\) 0.512546 1.74557i 0.512546 1.74557i −0.142315 0.989821i \(-0.545455\pi\)
0.654861 0.755750i \(-0.272727\pi\)
\(588\) 0 0
\(589\) −1.49611 0.215109i −1.49611 0.215109i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.80075 0.258908i 1.80075 0.258908i 0.841254 0.540641i \(-0.181818\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.81828 + 1.16854i 1.81828 + 1.16854i
\(605\) 0.415415 0.909632i 0.415415 0.909632i
\(606\) 0 0
\(607\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(608\) −1.04977 2.29868i −1.04977 2.29868i
\(609\) 0 0
\(610\) 0.817178 + 0.239945i 0.817178 + 0.239945i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(618\) 0 0
\(619\) 0.557730 + 1.89945i 0.557730 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(620\) 1.06731 1.06731
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.841254 0.540641i 0.841254 0.540641i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.983568 0.449181i 0.983568 0.449181i 0.142315 0.989821i \(-0.454545\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(632\) 0.817178 + 0.239945i 0.817178 + 0.239945i
\(633\) 0 0
\(634\) 0.678936 + 1.48666i 0.678936 + 1.48666i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.446343 + 0.694523i 0.446343 + 0.694523i
\(641\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 4.43918 1.30346i 4.43918 1.30346i
\(647\) 0.817178 0.708089i 0.817178 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.95949 0.281733i −1.95949 0.281733i −0.959493 0.281733i \(-0.909091\pi\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(660\) 0 0
\(661\) −0.983568 + 1.53046i −0.983568 + 1.53046i −0.142315 + 0.989821i \(0.545455\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(662\) −1.95949 + 0.281733i −1.95949 + 0.281733i
\(663\) 0 0
\(664\) 0.425839 0.368991i 0.425839 0.368991i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 2.54311i 2.54311i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0.182822 1.27155i 0.182822 1.27155i
\(677\) −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i \(-0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.658432 + 0.300696i −0.658432 + 0.300696i
\(681\) 0 0
\(682\) 0 0
\(683\) −0.512546 0.234072i −0.512546 0.234072i 0.142315 0.989821i \(-0.454545\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(684\) 0 0
\(685\) −0.0405070 0.281733i −0.0405070 0.281733i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(692\) 0.203930 + 0.694523i 0.203930 + 0.694523i
\(693\) 0 0
\(694\) 2.31329 1.48666i 2.31329 1.48666i
\(695\) −0.273100 1.89945i −0.273100 1.89945i
\(696\) 0 0
\(697\) 0 0
\(698\) 1.49611 + 1.29639i 1.49611 + 1.29639i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 1.14231 2.50132i 1.14231 2.50132i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.584585 0.909632i −0.584585 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.698939 0.449181i 0.698939 0.449181i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.45561 + 0.496841i 3.45561 + 0.496841i
\(723\) 0 0
\(724\) 0.391340 1.33278i 0.391340 1.33278i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 1.26352 + 0.577031i 1.26352 + 0.577031i
\(737\) 0 0
\(738\) 0 0
\(739\) −0.857685 0.989821i −0.857685 0.989821i 0.142315 0.989821i \(-0.454545\pi\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.544078 1.19136i 0.544078 1.19136i −0.415415 0.909632i \(-0.636364\pi\)
0.959493 0.281733i \(-0.0909091\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0.817178 + 0.708089i 0.817178 + 0.708089i 0.959493 0.281733i \(-0.0909091\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(752\) 0.325137 + 0.148485i 0.325137 + 0.148485i
\(753\) 0 0
\(754\) 0 0
\(755\) −1.41542 + 0.909632i −1.41542 + 0.909632i
\(756\) 0 0
\(757\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(758\) −2.28463 −2.28463
\(759\) 0 0
\(760\) −0.782679 −0.782679
\(761\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 1.80075 + 0.822373i 1.80075 + 0.822373i
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.118239 0.822373i 0.118239 0.822373i −0.841254 0.540641i \(-0.818182\pi\)
0.959493 0.281733i \(-0.0909091\pi\)
\(774\) 0 0
\(775\) −0.345139 + 0.755750i −0.345139 + 0.755750i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −1.37491 + 2.13940i −1.37491 + 2.13940i
\(783\) 0 0
\(784\) −0.608660 + 0.178719i −0.608660 + 0.178719i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(788\) 1.37491 2.13940i 1.37491 2.13940i
\(789\) 0 0
\(790\) −1.95949 + 2.26138i −1.95949 + 2.26138i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 1.92195 + 0.276335i 1.92195 + 0.276335i
\(797\) 0.544078 0.627899i 0.544078 0.627899i −0.415415 0.909632i \(-0.636364\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(798\) 0 0
\(799\) −0.512546 + 0.797537i −0.512546 + 0.797537i
\(800\) −1.37491 + 0.197682i −1.37491 + 0.197682i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(810\) 0 0
\(811\) −0.239446 0.153882i −0.239446 0.153882i 0.415415 0.909632i \(-0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 2.31329 1.05645i 2.31329 1.05645i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(822\) 0 0
\(823\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(828\) 0 0
\(829\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(830\) 0.557730 + 1.89945i 0.557730 + 1.89945i
\(831\) 0 0
\(832\) 0 0
\(833\) −0.239446 1.66538i −0.239446 1.66538i
\(834\) 0 0
\(835\) −1.80075 0.822373i −1.80075 0.822373i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(840\) 0 0
\(841\) −0.415415 0.909632i −0.415415 0.909632i
\(842\) −0.391340 + 2.72183i −0.391340 + 2.72183i
\(843\) 0 0
\(844\) 0.897877 1.96608i 0.897877 1.96608i
\(845\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(846\) 0 0
\(847\) 0 0
\(848\) −0.797176 0.919990i −0.797176 0.919990i
\(849\) 0 0
\(850\) 2.54311i 2.54311i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.121206 + 0.0174268i −0.121206 + 0.0174268i
\(857\) −0.983568 + 1.53046i −0.983568 + 1.53046i −0.142315 + 0.989821i \(0.545455\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(858\) 0 0
\(859\) −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i \(0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.557730 + 1.89945i −0.557730 + 1.89945i −0.142315 + 0.989821i \(0.545455\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(864\) 0 0
\(865\) −0.557730 0.0801894i −0.557730 0.0801894i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.817178 0.239945i 0.817178 0.239945i
\(873\) 0 0
\(874\) −2.31329 + 1.48666i −2.31329 + 1.48666i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(878\) 1.07028 + 1.66538i 1.07028 + 1.66538i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(882\) 0 0
\(883\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.56815 0.460451i −1.56815 0.460451i
\(887\) −0.983568 + 0.449181i −0.983568 + 0.449181i −0.841254 0.540641i \(-0.818182\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.862362 + 0.554206i −0.862362 + 0.554206i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 2.71616 1.74557i 2.71616 1.74557i
\(902\) 0 0
\(903\) 0 0
\(904\) 0.512546 + 0.234072i 0.512546 + 0.234072i
\(905\) 0.817178 + 0.708089i 0.817178 + 0.708089i
\(906\) 0 0
\(907\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(908\) −2.36533 0.694523i −2.36533 0.694523i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 1.04977 + 1.63348i 1.04977 + 1.63348i
\(917\) 0 0
\(918\) 0 0
\(919\) 1.08128i 1.08128i 0.841254 + 0.540641i \(0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(920\) 0.325137 0.281733i 0.325137 0.281733i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(930\) 0 0
\(931\) 0.512546 1.74557i 0.512546 1.74557i
\(932\) −0.716476 + 2.44009i −0.716476 + 2.44009i
\(933\) 0 0
\(934\) −2.51722 0.361922i −2.51722 0.361922i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.547045 0.474017i 0.547045 0.474017i
\(941\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.304632 + 0.474017i 0.304632 + 0.474017i 0.959493 0.281733i \(-0.0909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 1.14231 2.50132i 1.14231 2.50132i
\(951\) 0 0
\(952\) 0 0
\(953\) −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.0440780 + 0.306569i 0.0440780 + 0.306569i
\(962\) 0 0
\(963\) 0 0
\(964\) −0.391340 1.33278i −0.391340 1.33278i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0.121206 + 0.412791i 0.121206 + 0.412791i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.325137 0.148485i 0.325137 0.148485i
\(977\) −0.273100 0.0801894i −0.273100 0.0801894i 0.142315 0.989821i \(-0.454545\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.182822 + 1.27155i −0.182822 + 1.27155i
\(981\) 0 0
\(982\) 0 0
\(983\) 0.239446 + 0.153882i 0.239446 + 0.153882i 0.654861 0.755750i \(-0.272727\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(984\) 0 0
\(985\) 1.07028 + 1.66538i 1.07028 + 1.66538i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −0.273100 + 0.0801894i −0.273100 + 0.0801894i −0.415415 0.909632i \(-0.636364\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(992\) 0.872182 0.755750i 0.872182 0.755750i
\(993\) 0 0
\(994\) 0 0
\(995\) −0.817178 + 1.27155i −0.817178 + 1.27155i
\(996\) 0 0
\(997\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(998\) 0.425839 + 0.0612263i 0.425839 + 0.0612263i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1035.1.bd.a.244.1 10
3.2 odd 2 1035.1.bd.b.244.1 yes 10
5.4 even 2 1035.1.bd.b.244.1 yes 10
15.14 odd 2 CM 1035.1.bd.a.244.1 10
23.5 odd 22 1035.1.bd.b.649.1 yes 10
69.5 even 22 inner 1035.1.bd.a.649.1 yes 10
115.74 odd 22 inner 1035.1.bd.a.649.1 yes 10
345.74 even 22 1035.1.bd.b.649.1 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1035.1.bd.a.244.1 10 1.1 even 1 trivial
1035.1.bd.a.244.1 10 15.14 odd 2 CM
1035.1.bd.a.649.1 yes 10 69.5 even 22 inner
1035.1.bd.a.649.1 yes 10 115.74 odd 22 inner
1035.1.bd.b.244.1 yes 10 3.2 odd 2
1035.1.bd.b.244.1 yes 10 5.4 even 2
1035.1.bd.b.649.1 yes 10 23.5 odd 22
1035.1.bd.b.649.1 yes 10 345.74 even 22