Properties

Label 105.2.x.a.23.6
Level $105$
Weight $2$
Character 105.23
Analytic conductor $0.838$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,2,Mod(2,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 105.x (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.838429221223\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 23.6
Character \(\chi\) \(=\) 105.23
Dual form 105.2.x.a.32.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.298314 + 0.0799329i) q^{2} +(1.15464 + 1.29105i) q^{3} +(-1.64945 + 0.952310i) q^{4} +(1.56830 - 1.59387i) q^{5} +(-0.447643 - 0.292843i) q^{6} +(0.951942 + 2.46856i) q^{7} +(0.852694 - 0.852694i) q^{8} +(-0.333606 + 2.98139i) q^{9} +O(q^{10})\) \(q+(-0.298314 + 0.0799329i) q^{2} +(1.15464 + 1.29105i) q^{3} +(-1.64945 + 0.952310i) q^{4} +(1.56830 - 1.59387i) q^{5} +(-0.447643 - 0.292843i) q^{6} +(0.951942 + 2.46856i) q^{7} +(0.852694 - 0.852694i) q^{8} +(-0.333606 + 2.98139i) q^{9} +(-0.340444 + 0.600832i) q^{10} +(-0.660315 + 0.381233i) q^{11} +(-3.13400 - 1.02994i) q^{12} +(-2.27077 - 2.27077i) q^{13} +(-0.481297 - 0.660315i) q^{14} +(3.86859 + 0.184406i) q^{15} +(1.71841 - 2.97637i) q^{16} +(1.25794 - 4.69471i) q^{17} +(-0.138792 - 0.916057i) q^{18} +(1.41761 + 0.818455i) q^{19} +(-1.06898 + 4.12252i) q^{20} +(-2.08788 + 4.07931i) q^{21} +(0.166508 - 0.166508i) q^{22} +(-1.98015 - 7.39003i) q^{23} +(2.08542 + 0.116312i) q^{24} +(-0.0808456 - 4.99935i) q^{25} +(0.858909 + 0.495891i) q^{26} +(-4.23432 + 3.01174i) q^{27} +(-3.92102 - 3.16523i) q^{28} -4.94251 q^{29} +(-1.16879 + 0.254217i) q^{30} +(2.96413 + 5.13403i) q^{31} +(-0.898930 + 3.35485i) q^{32} +(-1.25462 - 0.412310i) q^{33} +1.50105i q^{34} +(5.42750 + 2.35419i) q^{35} +(-2.28894 - 5.23535i) q^{36} +(-0.915280 - 3.41587i) q^{37} +(-0.488313 - 0.130843i) q^{38} +(0.309745 - 5.55358i) q^{39} +(-0.0218004 - 2.69637i) q^{40} +4.35963i q^{41} +(0.296773 - 1.38380i) q^{42} +(2.69037 + 2.69037i) q^{43} +(0.726104 - 1.25765i) q^{44} +(4.22876 + 5.20746i) q^{45} +(1.18141 + 2.04627i) q^{46} +(-4.14148 + 1.10971i) q^{47} +(5.82678 - 1.21809i) q^{48} +(-5.18761 + 4.69986i) q^{49} +(0.423730 + 1.48491i) q^{50} +(7.51357 - 3.79665i) q^{51} +(5.90798 + 1.58304i) q^{52} +(6.71354 + 1.79889i) q^{53} +(1.02242 - 1.23690i) q^{54} +(-0.427939 + 1.65035i) q^{55} +(2.91664 + 1.29321i) q^{56} +(0.580162 + 2.77522i) q^{57} +(1.47442 - 0.395069i) q^{58} +(3.84501 + 6.65975i) q^{59} +(-6.55665 + 3.37993i) q^{60} +(-2.19699 + 3.80529i) q^{61} +(-1.29462 - 1.29462i) q^{62} +(-7.67733 + 2.01458i) q^{63} +5.80098i q^{64} +(-7.18056 + 0.0580554i) q^{65} +(0.407227 + 0.0227126i) q^{66} +(-0.0471345 - 0.0126297i) q^{67} +(2.39591 + 8.94164i) q^{68} +(7.25451 - 11.0893i) q^{69} +(-1.80728 - 0.268450i) q^{70} -12.4172i q^{71} +(2.25775 + 2.82668i) q^{72} +(0.359168 - 1.34043i) q^{73} +(0.546081 + 0.945840i) q^{74} +(6.36104 - 5.87683i) q^{75} -3.11769 q^{76} +(-1.56968 - 1.26712i) q^{77} +(0.351513 + 1.68147i) q^{78} +(-3.66808 - 2.11777i) q^{79} +(-2.04896 - 7.40677i) q^{80} +(-8.77741 - 1.98922i) q^{81} +(-0.348478 - 1.30054i) q^{82} +(-5.05351 + 5.05351i) q^{83} +(-0.440911 - 8.71692i) q^{84} +(-5.50993 - 9.36774i) q^{85} +(-1.01762 - 0.587525i) q^{86} +(-5.70683 - 6.38101i) q^{87} +(-0.237971 + 0.888122i) q^{88} +(-0.453600 + 0.785658i) q^{89} +(-1.67774 - 1.21544i) q^{90} +(3.44389 - 7.76716i) q^{91} +(10.3038 + 10.3038i) q^{92} +(-3.20576 + 9.75480i) q^{93} +(1.14676 - 0.662081i) q^{94} +(3.52775 - 0.975894i) q^{95} +(-5.36921 + 2.71309i) q^{96} +(3.73061 - 3.73061i) q^{97} +(1.17186 - 1.81669i) q^{98} +(-0.916321 - 2.09584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{3} - 24 q^{6} - 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 48 q - 2 q^{3} - 24 q^{6} - 12 q^{7} - 8 q^{10} - 10 q^{12} - 16 q^{13} + 4 q^{15} - 8 q^{16} + 14 q^{18} - 28 q^{21} - 8 q^{22} + 4 q^{25} + 40 q^{27} - 60 q^{28} + 40 q^{30} - 24 q^{31} - 4 q^{33} + 8 q^{36} + 4 q^{37} - 16 q^{40} + 14 q^{42} + 16 q^{43} + 40 q^{45} - 32 q^{46} + 44 q^{48} + 8 q^{51} + 36 q^{52} - 40 q^{55} - 88 q^{57} + 56 q^{58} - 50 q^{60} - 8 q^{61} + 44 q^{63} + 76 q^{66} + 12 q^{67} + 140 q^{70} - 34 q^{72} + 52 q^{73} + 6 q^{75} + 64 q^{76} - 120 q^{78} + 20 q^{81} + 104 q^{82} - 24 q^{85} - 46 q^{87} - 84 q^{90} + 72 q^{91} - 44 q^{93} + 12 q^{96} - 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.298314 + 0.0799329i −0.210940 + 0.0565211i −0.362741 0.931890i \(-0.618159\pi\)
0.151802 + 0.988411i \(0.451492\pi\)
\(3\) 1.15464 + 1.29105i 0.666633 + 0.745386i
\(4\) −1.64945 + 0.952310i −0.824725 + 0.476155i
\(5\) 1.56830 1.59387i 0.701367 0.712801i
\(6\) −0.447643 0.292843i −0.182749 0.119553i
\(7\) 0.951942 + 2.46856i 0.359800 + 0.933029i
\(8\) 0.852694 0.852694i 0.301473 0.301473i
\(9\) −0.333606 + 2.98139i −0.111202 + 0.993798i
\(10\) −0.340444 + 0.600832i −0.107658 + 0.190000i
\(11\) −0.660315 + 0.381233i −0.199092 + 0.114946i −0.596232 0.802812i \(-0.703336\pi\)
0.397140 + 0.917758i \(0.370003\pi\)
\(12\) −3.13400 1.02994i −0.904708 0.297318i
\(13\) −2.27077 2.27077i −0.629797 0.629797i 0.318220 0.948017i \(-0.396915\pi\)
−0.948017 + 0.318220i \(0.896915\pi\)
\(14\) −0.481297 0.660315i −0.128632 0.176477i
\(15\) 3.86859 + 0.184406i 0.998866 + 0.0476133i
\(16\) 1.71841 2.97637i 0.429602 0.744092i
\(17\) 1.25794 4.69471i 0.305096 1.13864i −0.627766 0.778402i \(-0.716030\pi\)
0.932862 0.360233i \(-0.117303\pi\)
\(18\) −0.138792 0.916057i −0.0327136 0.215917i
\(19\) 1.41761 + 0.818455i 0.325221 + 0.187767i 0.653717 0.756739i \(-0.273209\pi\)
−0.328496 + 0.944505i \(0.606542\pi\)
\(20\) −1.06898 + 4.12252i −0.239031 + 0.921823i
\(21\) −2.08788 + 4.07931i −0.455613 + 0.890178i
\(22\) 0.166508 0.166508i 0.0354996 0.0354996i
\(23\) −1.98015 7.39003i −0.412890 1.54093i −0.789024 0.614363i \(-0.789413\pi\)
0.376133 0.926566i \(-0.377253\pi\)
\(24\) 2.08542 + 0.116312i 0.425685 + 0.0237422i
\(25\) −0.0808456 4.99935i −0.0161691 0.999869i
\(26\) 0.858909 + 0.495891i 0.168446 + 0.0972523i
\(27\) −4.23432 + 3.01174i −0.814894 + 0.579610i
\(28\) −3.92102 3.16523i −0.741003 0.598172i
\(29\) −4.94251 −0.917801 −0.458900 0.888488i \(-0.651757\pi\)
−0.458900 + 0.888488i \(0.651757\pi\)
\(30\) −1.16879 + 0.254217i −0.213392 + 0.0464135i
\(31\) 2.96413 + 5.13403i 0.532374 + 0.922099i 0.999286 + 0.0377949i \(0.0120334\pi\)
−0.466911 + 0.884304i \(0.654633\pi\)
\(32\) −0.898930 + 3.35485i −0.158910 + 0.593060i
\(33\) −1.25462 0.412310i −0.218401 0.0717740i
\(34\) 1.50105i 0.257428i
\(35\) 5.42750 + 2.35419i 0.917416 + 0.397930i
\(36\) −2.28894 5.23535i −0.381491 0.872559i
\(37\) −0.915280 3.41587i −0.150471 0.561566i −0.999451 0.0331401i \(-0.989449\pi\)
0.848980 0.528426i \(-0.177217\pi\)
\(38\) −0.488313 0.130843i −0.0792148 0.0212255i
\(39\) 0.309745 5.55358i 0.0495990 0.889285i
\(40\) −0.0218004 2.69637i −0.00344694 0.426333i
\(41\) 4.35963i 0.680860i 0.940270 + 0.340430i \(0.110573\pi\)
−0.940270 + 0.340430i \(0.889427\pi\)
\(42\) 0.296773 1.38380i 0.0457930 0.213526i
\(43\) 2.69037 + 2.69037i 0.410277 + 0.410277i 0.881835 0.471558i \(-0.156308\pi\)
−0.471558 + 0.881835i \(0.656308\pi\)
\(44\) 0.726104 1.25765i 0.109464 0.189598i
\(45\) 4.22876 + 5.20746i 0.630386 + 0.776282i
\(46\) 1.18141 + 2.04627i 0.174190 + 0.301706i
\(47\) −4.14148 + 1.10971i −0.604097 + 0.161867i −0.547888 0.836552i \(-0.684568\pi\)
−0.0562089 + 0.998419i \(0.517901\pi\)
\(48\) 5.82678 1.21809i 0.841023 0.175817i
\(49\) −5.18761 + 4.69986i −0.741088 + 0.671408i
\(50\) 0.423730 + 1.48491i 0.0599244 + 0.209998i
\(51\) 7.51357 3.79665i 1.05211 0.531637i
\(52\) 5.90798 + 1.58304i 0.819290 + 0.219528i
\(53\) 6.71354 + 1.79889i 0.922176 + 0.247096i 0.688515 0.725222i \(-0.258263\pi\)
0.233661 + 0.972318i \(0.424929\pi\)
\(54\) 1.02242 1.23690i 0.139133 0.168321i
\(55\) −0.427939 + 1.65035i −0.0577032 + 0.222533i
\(56\) 2.91664 + 1.29321i 0.389753 + 0.172813i
\(57\) 0.580162 + 2.77522i 0.0768444 + 0.367587i
\(58\) 1.47442 0.395069i 0.193601 0.0518751i
\(59\) 3.84501 + 6.65975i 0.500577 + 0.867026i 1.00000 0.000666931i \(0.000212291\pi\)
−0.499422 + 0.866359i \(0.666454\pi\)
\(60\) −6.55665 + 3.37993i −0.846460 + 0.436347i
\(61\) −2.19699 + 3.80529i −0.281295 + 0.487218i −0.971704 0.236202i \(-0.924097\pi\)
0.690409 + 0.723420i \(0.257431\pi\)
\(62\) −1.29462 1.29462i −0.164417 0.164417i
\(63\) −7.67733 + 2.01458i −0.967253 + 0.253814i
\(64\) 5.80098i 0.725122i
\(65\) −7.18056 + 0.0580554i −0.890638 + 0.00720089i
\(66\) 0.407227 + 0.0227126i 0.0501261 + 0.00279573i
\(67\) −0.0471345 0.0126297i −0.00575840 0.00154296i 0.255939 0.966693i \(-0.417615\pi\)
−0.261697 + 0.965150i \(0.584282\pi\)
\(68\) 2.39591 + 8.94164i 0.290546 + 1.08433i
\(69\) 7.25451 11.0893i 0.873341 1.33500i
\(70\) −1.80728 0.268450i −0.216011 0.0320859i
\(71\) 12.4172i 1.47365i −0.676082 0.736826i \(-0.736324\pi\)
0.676082 0.736826i \(-0.263676\pi\)
\(72\) 2.25775 + 2.82668i 0.266079 + 0.333127i
\(73\) 0.359168 1.34043i 0.0420374 0.156886i −0.941717 0.336407i \(-0.890788\pi\)
0.983754 + 0.179521i \(0.0574549\pi\)
\(74\) 0.546081 + 0.945840i 0.0634806 + 0.109952i
\(75\) 6.36104 5.87683i 0.734510 0.678598i
\(76\) −3.11769 −0.357624
\(77\) −1.56968 1.26712i −0.178882 0.144401i
\(78\) 0.351513 + 1.68147i 0.0398010 + 0.190389i
\(79\) −3.66808 2.11777i −0.412692 0.238268i 0.279254 0.960217i \(-0.409913\pi\)
−0.691946 + 0.721950i \(0.743246\pi\)
\(80\) −2.04896 7.40677i −0.229081 0.828102i
\(81\) −8.77741 1.98922i −0.975268 0.221025i
\(82\) −0.348478 1.30054i −0.0384830 0.143620i
\(83\) −5.05351 + 5.05351i −0.554695 + 0.554695i −0.927792 0.373097i \(-0.878296\pi\)
0.373097 + 0.927792i \(0.378296\pi\)
\(84\) −0.440911 8.71692i −0.0481074 0.951094i
\(85\) −5.50993 9.36774i −0.597635 1.01607i
\(86\) −1.01762 0.587525i −0.109733 0.0633544i
\(87\) −5.70683 6.38101i −0.611836 0.684116i
\(88\) −0.237971 + 0.888122i −0.0253678 + 0.0946741i
\(89\) −0.453600 + 0.785658i −0.0480815 + 0.0832796i −0.889065 0.457782i \(-0.848644\pi\)
0.840983 + 0.541061i \(0.181977\pi\)
\(90\) −1.67774 1.21544i −0.176850 0.128118i
\(91\) 3.44389 7.76716i 0.361018 0.814220i
\(92\) 10.3038 + 10.3038i 1.07424 + 1.07424i
\(93\) −3.20576 + 9.75480i −0.332422 + 1.01153i
\(94\) 1.14676 0.662081i 0.118279 0.0682884i
\(95\) 3.52775 0.975894i 0.361939 0.100125i
\(96\) −5.36921 + 2.71309i −0.547993 + 0.276904i
\(97\) 3.73061 3.73061i 0.378786 0.378786i −0.491878 0.870664i \(-0.663689\pi\)
0.870664 + 0.491878i \(0.163689\pi\)
\(98\) 1.17186 1.81669i 0.118376 0.183514i
\(99\) −0.916321 2.09584i −0.0920937 0.210640i
\(100\) 4.89428 + 8.16918i 0.489428 + 0.816918i
\(101\) −16.4444 + 9.49420i −1.63628 + 0.944708i −0.654185 + 0.756335i \(0.726988\pi\)
−0.982098 + 0.188373i \(0.939679\pi\)
\(102\) −1.93792 + 1.73317i −0.191883 + 0.171610i
\(103\) 12.2009 3.26921i 1.20219 0.322125i 0.398494 0.917171i \(-0.369533\pi\)
0.803692 + 0.595046i \(0.202866\pi\)
\(104\) −3.87254 −0.379733
\(105\) 3.22746 + 9.72541i 0.314967 + 0.949102i
\(106\) −2.14653 −0.208490
\(107\) 2.10635 0.564395i 0.203629 0.0545621i −0.155563 0.987826i \(-0.549719\pi\)
0.359192 + 0.933264i \(0.383052\pi\)
\(108\) 4.11618 9.00009i 0.396079 0.866034i
\(109\) 2.04357 1.17986i 0.195739 0.113010i −0.398928 0.916982i \(-0.630618\pi\)
0.594666 + 0.803973i \(0.297284\pi\)
\(110\) −0.00425702 0.526527i −0.000405891 0.0502024i
\(111\) 3.35323 5.12578i 0.318275 0.486517i
\(112\) 8.98318 + 1.40867i 0.848831 + 0.133107i
\(113\) −11.9386 + 11.9386i −1.12309 + 1.12309i −0.131814 + 0.991274i \(0.542080\pi\)
−0.991274 + 0.131814i \(0.957920\pi\)
\(114\) −0.394902 0.781512i −0.0369859 0.0731953i
\(115\) −14.8842 8.43371i −1.38796 0.786447i
\(116\) 8.15242 4.70680i 0.756933 0.437015i
\(117\) 7.52759 6.01250i 0.695925 0.555856i
\(118\) −1.67935 1.67935i −0.154597 0.154597i
\(119\) 12.7867 1.36378i 1.17215 0.125017i
\(120\) 3.45597 3.14148i 0.315485 0.286777i
\(121\) −5.20932 + 9.02281i −0.473575 + 0.820256i
\(122\) 0.351223 1.31078i 0.0317983 0.118673i
\(123\) −5.62849 + 5.03381i −0.507504 + 0.453884i
\(124\) −9.77837 5.64555i −0.878124 0.506985i
\(125\) −8.09510 7.71164i −0.724048 0.689750i
\(126\) 2.12922 1.21465i 0.189686 0.108210i
\(127\) 4.46126 4.46126i 0.395873 0.395873i −0.480901 0.876775i \(-0.659691\pi\)
0.876775 + 0.480901i \(0.159691\pi\)
\(128\) −2.26155 8.44022i −0.199895 0.746017i
\(129\) −0.366982 + 6.57980i −0.0323109 + 0.579319i
\(130\) 2.13742 0.591281i 0.187464 0.0518588i
\(131\) −1.86149 1.07473i −0.162639 0.0938999i 0.416471 0.909149i \(-0.363267\pi\)
−0.579111 + 0.815249i \(0.696600\pi\)
\(132\) 2.46207 0.514699i 0.214296 0.0447988i
\(133\) −0.670931 + 4.27857i −0.0581771 + 0.370999i
\(134\) 0.0150704 0.00130188
\(135\) −1.84037 + 11.4723i −0.158394 + 0.987376i
\(136\) −2.93051 5.07580i −0.251289 0.435246i
\(137\) 2.28207 8.51678i 0.194970 0.727638i −0.797305 0.603577i \(-0.793742\pi\)
0.992275 0.124061i \(-0.0395918\pi\)
\(138\) −1.27772 + 3.88797i −0.108767 + 0.330966i
\(139\) 10.3626i 0.878941i 0.898257 + 0.439471i \(0.144834\pi\)
−0.898257 + 0.439471i \(0.855166\pi\)
\(140\) −11.1943 + 1.28555i −0.946092 + 0.108649i
\(141\) −6.21461 4.06553i −0.523364 0.342380i
\(142\) 0.992544 + 3.70423i 0.0832925 + 0.310852i
\(143\) 2.36511 + 0.633730i 0.197780 + 0.0529951i
\(144\) 8.30046 + 6.11618i 0.691705 + 0.509682i
\(145\) −7.75136 + 7.87772i −0.643715 + 0.654209i
\(146\) 0.428578i 0.0354694i
\(147\) −12.0576 1.27081i −0.994492 0.104814i
\(148\) 4.76267 + 4.76267i 0.391489 + 0.391489i
\(149\) 8.72716 15.1159i 0.714957 1.23834i −0.248019 0.968755i \(-0.579780\pi\)
0.962976 0.269586i \(-0.0868870\pi\)
\(150\) −1.42783 + 2.26160i −0.116582 + 0.184658i
\(151\) 7.60786 + 13.1772i 0.619119 + 1.07235i 0.989647 + 0.143524i \(0.0458434\pi\)
−0.370528 + 0.928821i \(0.620823\pi\)
\(152\) 1.90668 0.510892i 0.154652 0.0414388i
\(153\) 13.5771 + 5.31661i 1.09765 + 0.429823i
\(154\) 0.569541 + 0.252530i 0.0458949 + 0.0203494i
\(155\) 12.8316 + 3.32727i 1.03066 + 0.267253i
\(156\) 4.77782 + 9.45533i 0.382532 + 0.757032i
\(157\) −8.82516 2.36469i −0.704324 0.188723i −0.111158 0.993803i \(-0.535456\pi\)
−0.593167 + 0.805080i \(0.702122\pi\)
\(158\) 1.26352 + 0.338559i 0.100520 + 0.0269343i
\(159\) 5.42929 + 10.7446i 0.430570 + 0.852100i
\(160\) 3.93740 + 6.69421i 0.311279 + 0.529223i
\(161\) 16.3578 11.9230i 1.28917 0.939665i
\(162\) 2.77743 0.108192i 0.218215 0.00850040i
\(163\) −2.61508 + 0.700710i −0.204829 + 0.0548838i −0.359775 0.933039i \(-0.617146\pi\)
0.154946 + 0.987923i \(0.450480\pi\)
\(164\) −4.15172 7.19099i −0.324195 0.561522i
\(165\) −2.62479 + 1.35307i −0.204340 + 0.105336i
\(166\) 1.10359 1.91147i 0.0856551 0.148359i
\(167\) 3.85551 + 3.85551i 0.298348 + 0.298348i 0.840367 0.542018i \(-0.182340\pi\)
−0.542018 + 0.840367i \(0.682340\pi\)
\(168\) 1.69808 + 5.25872i 0.131010 + 0.405719i
\(169\) 2.68725i 0.206712i
\(170\) 2.39248 + 2.35410i 0.183495 + 0.180551i
\(171\) −2.91306 + 3.95340i −0.222767 + 0.302324i
\(172\) −6.99969 1.87556i −0.533721 0.143010i
\(173\) −0.342481 1.27815i −0.0260383 0.0971763i 0.951684 0.307080i \(-0.0993518\pi\)
−0.977722 + 0.209903i \(0.932685\pi\)
\(174\) 2.21248 + 1.44738i 0.167727 + 0.109726i
\(175\) 12.2642 4.95866i 0.927090 0.374839i
\(176\) 2.62045i 0.197524i
\(177\) −4.15845 + 12.6537i −0.312568 + 0.951111i
\(178\) 0.0725151 0.270630i 0.00543524 0.0202846i
\(179\) 0.120836 + 0.209294i 0.00903168 + 0.0156433i 0.870506 0.492158i \(-0.163792\pi\)
−0.861474 + 0.507801i \(0.830458\pi\)
\(180\) −11.9342 4.56234i −0.889525 0.340057i
\(181\) 18.6864 1.38895 0.694475 0.719517i \(-0.255637\pi\)
0.694475 + 0.719517i \(0.255637\pi\)
\(182\) −0.406508 + 2.59233i −0.0301324 + 0.192156i
\(183\) −7.44955 + 1.55734i −0.550686 + 0.115122i
\(184\) −7.98990 4.61297i −0.589023 0.340073i
\(185\) −6.87989 3.89829i −0.505820 0.286608i
\(186\) 0.176594 3.16624i 0.0129485 0.232160i
\(187\) 0.959140 + 3.57956i 0.0701393 + 0.261763i
\(188\) 5.77437 5.77437i 0.421140 0.421140i
\(189\) −11.4655 7.58568i −0.833992 0.551777i
\(190\) −0.974370 + 0.573106i −0.0706882 + 0.0415775i
\(191\) 12.3330 + 7.12049i 0.892388 + 0.515220i 0.874723 0.484624i \(-0.161043\pi\)
0.0176651 + 0.999844i \(0.494377\pi\)
\(192\) −7.48934 + 6.69805i −0.540496 + 0.483390i
\(193\) 1.76414 6.58385i 0.126985 0.473916i −0.872917 0.487868i \(-0.837775\pi\)
0.999903 + 0.0139523i \(0.00444129\pi\)
\(194\) −0.814694 + 1.41109i −0.0584916 + 0.101310i
\(195\) −8.36592 9.20340i −0.599096 0.659069i
\(196\) 4.08099 12.6924i 0.291499 0.906599i
\(197\) −7.65626 7.65626i −0.545486 0.545486i 0.379646 0.925132i \(-0.376046\pi\)
−0.925132 + 0.379646i \(0.876046\pi\)
\(198\) 0.440878 + 0.551974i 0.0313318 + 0.0392271i
\(199\) 14.1855 8.19000i 1.00558 0.580573i 0.0956874 0.995411i \(-0.469495\pi\)
0.909895 + 0.414838i \(0.136162\pi\)
\(200\) −4.33185 4.19398i −0.306308 0.296559i
\(201\) −0.0381180 0.0754356i −0.00268864 0.00532082i
\(202\) 4.14670 4.14670i 0.291761 0.291761i
\(203\) −4.70498 12.2009i −0.330225 0.856335i
\(204\) −8.77767 + 13.4176i −0.614560 + 0.939421i
\(205\) 6.94869 + 6.83723i 0.485318 + 0.477533i
\(206\) −3.37836 + 1.95050i −0.235382 + 0.135898i
\(207\) 22.6932 3.43826i 1.57729 0.238975i
\(208\) −10.6607 + 2.85654i −0.739189 + 0.198065i
\(209\) −1.24809 −0.0863321
\(210\) −1.74017 2.64324i −0.120083 0.182401i
\(211\) −25.5028 −1.75568 −0.877842 0.478950i \(-0.841018\pi\)
−0.877842 + 0.478950i \(0.841018\pi\)
\(212\) −12.7867 + 3.42620i −0.878197 + 0.235312i
\(213\) 16.0312 14.3374i 1.09844 0.982385i
\(214\) −0.583239 + 0.336733i −0.0398694 + 0.0230186i
\(215\) 8.50741 0.0687831i 0.580201 0.00469097i
\(216\) −1.04248 + 6.17867i −0.0709320 + 0.420405i
\(217\) −9.85200 + 12.2044i −0.668797 + 0.828492i
\(218\) −0.515316 + 0.515316i −0.0349016 + 0.0349016i
\(219\) 2.14527 1.08402i 0.144964 0.0732510i
\(220\) −0.865778 3.12969i −0.0583707 0.211004i
\(221\) −13.5171 + 7.80410i −0.909258 + 0.524960i
\(222\) −0.590596 + 1.79712i −0.0396382 + 0.120615i
\(223\) −15.4546 15.4546i −1.03491 1.03491i −0.999368 0.0355465i \(-0.988683\pi\)
−0.0355465 0.999368i \(-0.511317\pi\)
\(224\) −9.13740 + 0.974557i −0.610518 + 0.0651154i
\(225\) 14.9320 + 1.42678i 0.995466 + 0.0951186i
\(226\) 2.60716 4.51573i 0.173426 0.300382i
\(227\) −3.32527 + 12.4101i −0.220706 + 0.823686i 0.763374 + 0.645957i \(0.223542\pi\)
−0.984080 + 0.177728i \(0.943125\pi\)
\(228\) −3.59982 4.02509i −0.238404 0.266568i
\(229\) 13.2508 + 7.65038i 0.875641 + 0.505551i 0.869219 0.494428i \(-0.164622\pi\)
0.00642204 + 0.999979i \(0.497956\pi\)
\(230\) 5.11430 + 1.32615i 0.337227 + 0.0874438i
\(231\) −0.176508 3.48960i −0.0116134 0.229599i
\(232\) −4.21445 + 4.21445i −0.276692 + 0.276692i
\(233\) 1.77586 + 6.62761i 0.116341 + 0.434189i 0.999384 0.0351029i \(-0.0111759\pi\)
−0.883043 + 0.469292i \(0.844509\pi\)
\(234\) −1.76498 + 2.39531i −0.115381 + 0.156587i
\(235\) −4.72637 + 8.34134i −0.308314 + 0.544129i
\(236\) −12.6843 7.32328i −0.825677 0.476705i
\(237\) −1.50118 7.18093i −0.0975122 0.466452i
\(238\) −3.70543 + 1.42891i −0.240188 + 0.0926225i
\(239\) −18.7082 −1.21013 −0.605067 0.796174i \(-0.706854\pi\)
−0.605067 + 0.796174i \(0.706854\pi\)
\(240\) 7.19668 11.1975i 0.464543 0.722794i
\(241\) 0.986063 + 1.70791i 0.0635179 + 0.110016i 0.896036 0.443982i \(-0.146435\pi\)
−0.832518 + 0.553998i \(0.813101\pi\)
\(242\) 0.832793 3.10802i 0.0535339 0.199791i
\(243\) −7.56659 13.6289i −0.485397 0.874294i
\(244\) 8.36885i 0.535761i
\(245\) −0.644793 + 15.6392i −0.0411943 + 0.999151i
\(246\) 1.27669 1.95156i 0.0813987 0.124427i
\(247\) −1.36053 5.07757i −0.0865685 0.323078i
\(248\) 6.90525 + 1.85026i 0.438484 + 0.117491i
\(249\) −12.3593 0.689328i −0.783240 0.0436844i
\(250\) 3.03129 + 1.65342i 0.191716 + 0.104572i
\(251\) 17.9016i 1.12994i 0.825112 + 0.564970i \(0.191112\pi\)
−0.825112 + 0.564970i \(0.808888\pi\)
\(252\) 10.7449 10.6342i 0.676863 0.669889i
\(253\) 4.12485 + 4.12485i 0.259327 + 0.259327i
\(254\) −0.974254 + 1.68746i −0.0611301 + 0.105881i
\(255\) 5.73220 17.9300i 0.358965 1.12282i
\(256\) −4.45168 7.71053i −0.278230 0.481908i
\(257\) 19.0468 5.10358i 1.18811 0.318353i 0.389971 0.920827i \(-0.372485\pi\)
0.798138 + 0.602475i \(0.205819\pi\)
\(258\) −0.416467 1.99218i −0.0259281 0.124028i
\(259\) 7.56100 5.51114i 0.469818 0.342445i
\(260\) 11.7887 6.93387i 0.731102 0.430021i
\(261\) 1.64885 14.7356i 0.102061 0.912109i
\(262\) 0.641215 + 0.171813i 0.0396144 + 0.0106147i
\(263\) 5.35948 + 1.43607i 0.330480 + 0.0885517i 0.420244 0.907411i \(-0.361945\pi\)
−0.0897640 + 0.995963i \(0.528611\pi\)
\(264\) −1.42138 + 0.718230i −0.0874798 + 0.0442040i
\(265\) 13.3961 7.87931i 0.822914 0.484022i
\(266\) −0.141851 1.32999i −0.00869744 0.0815467i
\(267\) −1.53807 + 0.321534i −0.0941281 + 0.0196776i
\(268\) 0.0897733 0.0240547i 0.00548378 0.00146937i
\(269\) 5.02321 + 8.70045i 0.306270 + 0.530476i 0.977543 0.210734i \(-0.0675855\pi\)
−0.671273 + 0.741210i \(0.734252\pi\)
\(270\) −0.368004 3.56944i −0.0223960 0.217229i
\(271\) 2.82028 4.88486i 0.171320 0.296734i −0.767562 0.640975i \(-0.778530\pi\)
0.938881 + 0.344241i \(0.111864\pi\)
\(272\) −11.8115 11.8115i −0.716180 0.716180i
\(273\) 14.0042 4.52206i 0.847575 0.273688i
\(274\) 2.72309i 0.164508i
\(275\) 1.95930 + 3.27032i 0.118150 + 0.197208i
\(276\) −1.40549 + 25.1998i −0.0846007 + 1.51685i
\(277\) −10.8617 2.91038i −0.652615 0.174868i −0.0827040 0.996574i \(-0.526356\pi\)
−0.569911 + 0.821707i \(0.693022\pi\)
\(278\) −0.828310 3.09130i −0.0496787 0.185404i
\(279\) −16.2954 + 7.12451i −0.975581 + 0.426533i
\(280\) 6.63540 2.62060i 0.396541 0.156611i
\(281\) 1.92831i 0.115033i −0.998345 0.0575167i \(-0.981682\pi\)
0.998345 0.0575167i \(-0.0183183\pi\)
\(282\) 2.17887 + 0.716052i 0.129750 + 0.0426403i
\(283\) −6.82379 + 25.4667i −0.405632 + 1.51384i 0.397254 + 0.917709i \(0.369963\pi\)
−0.802887 + 0.596132i \(0.796704\pi\)
\(284\) 11.8250 + 20.4816i 0.701687 + 1.21536i
\(285\) 5.33321 + 3.42768i 0.315912 + 0.203038i
\(286\) −0.756201 −0.0447151
\(287\) −10.7620 + 4.15012i −0.635263 + 0.244974i
\(288\) −9.70225 3.79926i −0.571710 0.223874i
\(289\) −5.73548 3.31138i −0.337381 0.194787i
\(290\) 1.68265 2.96962i 0.0988084 0.174382i
\(291\) 9.12392 + 0.508877i 0.534853 + 0.0298309i
\(292\) 0.684078 + 2.55301i 0.0400326 + 0.149404i
\(293\) 7.83332 7.83332i 0.457627 0.457627i −0.440249 0.897876i \(-0.645110\pi\)
0.897876 + 0.440249i \(0.145110\pi\)
\(294\) 3.69852 0.584698i 0.215702 0.0341003i
\(295\) 16.6449 + 4.31607i 0.969105 + 0.251291i
\(296\) −3.69315 2.13224i −0.214660 0.123934i
\(297\) 1.64781 3.60296i 0.0956155 0.209065i
\(298\) −1.39517 + 5.20686i −0.0808203 + 0.301625i
\(299\) −12.2846 + 21.2775i −0.710435 + 1.23051i
\(300\) −4.89566 + 15.7512i −0.282651 + 0.909397i
\(301\) −4.08027 + 9.20242i −0.235183 + 0.530418i
\(302\) −3.32282 3.32282i −0.191207 0.191207i
\(303\) −31.2449 10.2681i −1.79497 0.589890i
\(304\) 4.87205 2.81288i 0.279431 0.161330i
\(305\) 2.61960 + 9.46957i 0.149998 + 0.542226i
\(306\) −4.47522 0.500759i −0.255831 0.0286265i
\(307\) −17.0769 + 17.0769i −0.974628 + 0.974628i −0.999686 0.0250576i \(-0.992023\pi\)
0.0250576 + 0.999686i \(0.492023\pi\)
\(308\) 3.79579 + 0.595226i 0.216285 + 0.0339161i
\(309\) 18.3083 + 11.9771i 1.04152 + 0.681354i
\(310\) −4.09381 + 0.0330988i −0.232513 + 0.00187989i
\(311\) 20.4797 11.8240i 1.16130 0.670475i 0.209683 0.977769i \(-0.432757\pi\)
0.951615 + 0.307294i \(0.0994235\pi\)
\(312\) −4.47139 4.99963i −0.253143 0.283048i
\(313\) 11.9578 3.20409i 0.675895 0.181106i 0.0954864 0.995431i \(-0.469559\pi\)
0.580409 + 0.814325i \(0.302893\pi\)
\(314\) 2.82168 0.159237
\(315\) −8.82940 + 15.3962i −0.497481 + 0.867475i
\(316\) 8.06709 0.453809
\(317\) −4.24276 + 1.13684i −0.238297 + 0.0638515i −0.375991 0.926623i \(-0.622698\pi\)
0.137694 + 0.990475i \(0.456031\pi\)
\(318\) −2.47848 2.77127i −0.138986 0.155405i
\(319\) 3.26361 1.88425i 0.182727 0.105498i
\(320\) 9.24601 + 9.09770i 0.516868 + 0.508577i
\(321\) 3.16074 + 2.06772i 0.176415 + 0.115409i
\(322\) −3.92671 + 4.86432i −0.218827 + 0.271078i
\(323\) 5.62568 5.62568i 0.313021 0.313021i
\(324\) 16.3723 5.07770i 0.909570 0.282094i
\(325\) −11.1688 + 11.5359i −0.619531 + 0.639898i
\(326\) 0.724106 0.418063i 0.0401045 0.0231543i
\(327\) 3.88284 + 1.27604i 0.214722 + 0.0705650i
\(328\) 3.71743 + 3.71743i 0.205261 + 0.205261i
\(329\) −6.68183 9.16713i −0.368381 0.505400i
\(330\) 0.674856 0.613446i 0.0371496 0.0337691i
\(331\) 3.10933 5.38552i 0.170904 0.296015i −0.767832 0.640651i \(-0.778664\pi\)
0.938736 + 0.344636i \(0.111998\pi\)
\(332\) 3.52300 13.1480i 0.193350 0.721591i
\(333\) 10.4894 1.58925i 0.574815 0.0870906i
\(334\) −1.45833 0.841970i −0.0797965 0.0460705i
\(335\) −0.0940513 + 0.0553192i −0.00513857 + 0.00302241i
\(336\) 8.55370 + 13.2242i 0.466642 + 0.721440i
\(337\) 15.0501 15.0501i 0.819833 0.819833i −0.166250 0.986084i \(-0.553166\pi\)
0.986084 + 0.166250i \(0.0531659\pi\)
\(338\) 0.214800 + 0.801644i 0.0116836 + 0.0436037i
\(339\) −29.1981 1.62849i −1.58582 0.0884476i
\(340\) 18.0093 + 10.2045i 0.976693 + 0.553414i
\(341\) −3.91452 2.26005i −0.211983 0.122389i
\(342\) 0.552999 1.41220i 0.0299027 0.0763632i
\(343\) −16.5402 8.33197i −0.893087 0.449884i
\(344\) 4.58812 0.247375
\(345\) −6.29764 28.9542i −0.339053 1.55884i
\(346\) 0.204333 + 0.353916i 0.0109850 + 0.0190266i
\(347\) −4.98539 + 18.6057i −0.267630 + 0.998808i 0.692991 + 0.720946i \(0.256292\pi\)
−0.960621 + 0.277862i \(0.910374\pi\)
\(348\) 15.4898 + 5.09049i 0.830342 + 0.272879i
\(349\) 9.24369i 0.494803i 0.968913 + 0.247402i \(0.0795767\pi\)
−0.968913 + 0.247402i \(0.920423\pi\)
\(350\) −3.26223 + 2.45955i −0.174374 + 0.131469i
\(351\) 16.4541 + 2.77618i 0.878254 + 0.148182i
\(352\) −0.685404 2.55796i −0.0365321 0.136340i
\(353\) 11.4070 + 3.05649i 0.607132 + 0.162681i 0.549271 0.835644i \(-0.314905\pi\)
0.0578609 + 0.998325i \(0.481572\pi\)
\(354\) 0.229073 4.10717i 0.0121751 0.218294i
\(355\) −19.7914 19.4740i −1.05042 1.03357i
\(356\) 1.72787i 0.0915769i
\(357\) 16.5247 + 14.9335i 0.874582 + 0.790367i
\(358\) −0.0527764 0.0527764i −0.00278932 0.00278932i
\(359\) −6.98129 + 12.0920i −0.368459 + 0.638189i −0.989325 0.145728i \(-0.953448\pi\)
0.620866 + 0.783917i \(0.286781\pi\)
\(360\) 8.04620 + 0.834529i 0.424072 + 0.0439835i
\(361\) −8.16026 14.1340i −0.429487 0.743894i
\(362\) −5.57441 + 1.49366i −0.292985 + 0.0785050i
\(363\) −17.6638 + 3.69263i −0.927108 + 0.193813i
\(364\) 1.71622 + 16.0912i 0.0899544 + 0.843408i
\(365\) −1.57319 2.67467i −0.0823446 0.139999i
\(366\) 2.09782 1.06004i 0.109655 0.0554091i
\(367\) 14.5688 + 3.90370i 0.760485 + 0.203771i 0.618164 0.786049i \(-0.287877\pi\)
0.142321 + 0.989821i \(0.454543\pi\)
\(368\) −25.3982 6.80542i −1.32397 0.354757i
\(369\) −12.9978 1.45440i −0.676638 0.0757130i
\(370\) 2.36397 + 0.612982i 0.122897 + 0.0318674i
\(371\) 1.95023 + 18.2852i 0.101251 + 0.949323i
\(372\) −4.00185 19.1429i −0.207486 0.992515i
\(373\) 33.6495 9.01635i 1.74230 0.466849i 0.759347 0.650686i \(-0.225519\pi\)
0.982957 + 0.183837i \(0.0588519\pi\)
\(374\) −0.572249 0.991165i −0.0295903 0.0512519i
\(375\) 0.609149 19.3553i 0.0314563 0.999505i
\(376\) −2.58517 + 4.47765i −0.133320 + 0.230917i
\(377\) 11.2233 + 11.2233i 0.578028 + 0.578028i
\(378\) 4.02666 + 1.34644i 0.207109 + 0.0692535i
\(379\) 19.0602i 0.979056i −0.871988 0.489528i \(-0.837169\pi\)
0.871988 0.489528i \(-0.162831\pi\)
\(380\) −4.88949 + 4.96920i −0.250825 + 0.254914i
\(381\) 10.9109 + 0.608542i 0.558980 + 0.0311765i
\(382\) −4.24828 1.13832i −0.217361 0.0582417i
\(383\) −2.62860 9.81007i −0.134315 0.501271i −1.00000 0.000681261i \(-0.999783\pi\)
0.865685 0.500590i \(-0.166884\pi\)
\(384\) 8.28544 12.6652i 0.422815 0.646318i
\(385\) −4.48136 + 0.514639i −0.228391 + 0.0262284i
\(386\) 2.10507i 0.107145i
\(387\) −8.91857 + 7.12352i −0.453356 + 0.362109i
\(388\) −2.60076 + 9.70615i −0.132033 + 0.492755i
\(389\) −18.6290 32.2664i −0.944528 1.63597i −0.756693 0.653770i \(-0.773186\pi\)
−0.187835 0.982201i \(-0.560147\pi\)
\(390\) 3.23132 + 2.07679i 0.163624 + 0.105162i
\(391\) −37.1850 −1.88053
\(392\) −0.415908 + 8.43099i −0.0210065 + 0.425829i
\(393\) −0.761825 3.64421i −0.0384290 0.183826i
\(394\) 2.89595 + 1.67198i 0.145896 + 0.0842331i
\(395\) −9.12812 + 2.52514i −0.459286 + 0.127054i
\(396\) 3.50731 + 2.58436i 0.176249 + 0.129869i
\(397\) −2.30077 8.58658i −0.115472 0.430948i 0.883850 0.467771i \(-0.154943\pi\)
−0.999322 + 0.0368231i \(0.988276\pi\)
\(398\) −3.57708 + 3.57708i −0.179303 + 0.179303i
\(399\) −6.29852 + 4.07401i −0.315321 + 0.203956i
\(400\) −15.0188 8.35029i −0.750941 0.417514i
\(401\) 4.02832 + 2.32575i 0.201165 + 0.116142i 0.597199 0.802093i \(-0.296280\pi\)
−0.396034 + 0.918236i \(0.629614\pi\)
\(402\) 0.0174009 + 0.0194566i 0.000867878 + 0.000970407i
\(403\) 4.92733 18.3890i 0.245448 0.916023i
\(404\) 18.0828 31.3204i 0.899655 1.55825i
\(405\) −16.9362 + 10.8704i −0.841567 + 0.540152i
\(406\) 2.37881 + 3.26361i 0.118059 + 0.161970i
\(407\) 1.90662 + 1.90662i 0.0945074 + 0.0945074i
\(408\) 3.16940 9.64415i 0.156909 0.477457i
\(409\) 23.0006 13.2794i 1.13731 0.656626i 0.191546 0.981484i \(-0.438650\pi\)
0.945763 + 0.324858i \(0.105317\pi\)
\(410\) −2.61941 1.48421i −0.129363 0.0732999i
\(411\) 13.6305 6.88758i 0.672345 0.339739i
\(412\) −17.0114 + 17.0114i −0.838091 + 0.838091i
\(413\) −12.7798 + 15.8313i −0.628853 + 0.779009i
\(414\) −6.49486 + 2.83961i −0.319205 + 0.139559i
\(415\) 0.129200 + 15.9801i 0.00634219 + 0.784431i
\(416\) 9.65934 5.57682i 0.473588 0.273426i
\(417\) −13.3786 + 11.9650i −0.655151 + 0.585931i
\(418\) 0.372322 0.0997634i 0.0182109 0.00487959i
\(419\) 25.8278 1.26177 0.630885 0.775876i \(-0.282692\pi\)
0.630885 + 0.775876i \(0.282692\pi\)
\(420\) −14.5851 12.9680i −0.711681 0.632775i
\(421\) 0.432430 0.0210753 0.0105377 0.999944i \(-0.496646\pi\)
0.0105377 + 0.999944i \(0.496646\pi\)
\(422\) 7.60783 2.03851i 0.370343 0.0992332i
\(423\) −1.92685 12.7176i −0.0936866 0.618350i
\(424\) 7.25850 4.19070i 0.352504 0.203518i
\(425\) −23.5722 5.90935i −1.14342 0.286646i
\(426\) −3.63630 + 5.55847i −0.176179 + 0.269309i
\(427\) −11.4850 1.80099i −0.555799 0.0871558i
\(428\) −2.93684 + 2.93684i −0.141957 + 0.141957i
\(429\) 1.91268 + 3.78520i 0.0923451 + 0.182751i
\(430\) −2.53238 + 0.700541i −0.122122 + 0.0337831i
\(431\) −14.1264 + 8.15586i −0.680443 + 0.392854i −0.800022 0.599971i \(-0.795179\pi\)
0.119579 + 0.992825i \(0.461846\pi\)
\(432\) 1.68777 + 17.7783i 0.0812029 + 0.855358i
\(433\) −0.514238 0.514238i −0.0247127 0.0247127i 0.694642 0.719355i \(-0.255563\pi\)
−0.719355 + 0.694642i \(0.755563\pi\)
\(434\) 1.96345 4.42825i 0.0942486 0.212563i
\(435\) −19.1205 0.911426i −0.916760 0.0436995i
\(436\) −2.24718 + 3.89223i −0.107620 + 0.186404i
\(437\) 3.24133 12.0968i 0.155054 0.578669i
\(438\) −0.553315 + 0.494855i −0.0264384 + 0.0236451i
\(439\) −13.2487 7.64917i −0.632328 0.365075i 0.149325 0.988788i \(-0.452290\pi\)
−0.781653 + 0.623713i \(0.785623\pi\)
\(440\) 1.04234 + 1.77214i 0.0496916 + 0.0844835i
\(441\) −12.2815 17.0342i −0.584834 0.811153i
\(442\) 3.40853 3.40853i 0.162127 0.162127i
\(443\) 2.36181 + 8.81439i 0.112213 + 0.418784i 0.999063 0.0432723i \(-0.0137783\pi\)
−0.886850 + 0.462057i \(0.847112\pi\)
\(444\) −0.649656 + 11.6480i −0.0308313 + 0.552791i
\(445\) 0.540854 + 1.95513i 0.0256390 + 0.0926820i
\(446\) 5.84564 + 3.37498i 0.276799 + 0.159810i
\(447\) 29.5921 6.18625i 1.39966 0.292600i
\(448\) −14.3201 + 5.52219i −0.676560 + 0.260899i
\(449\) 9.40891 0.444034 0.222017 0.975043i \(-0.428736\pi\)
0.222017 + 0.975043i \(0.428736\pi\)
\(450\) −4.56846 + 0.767930i −0.215359 + 0.0362005i
\(451\) −1.66204 2.87873i −0.0782622 0.135554i
\(452\) 8.32286 31.0613i 0.391474 1.46100i
\(453\) −8.22804 + 25.0370i −0.386587 + 1.17634i
\(454\) 3.96789i 0.186222i
\(455\) −6.97878 17.6704i −0.327170 0.828401i
\(456\) 2.86111 + 1.87171i 0.133984 + 0.0876509i
\(457\) −8.93665 33.3520i −0.418039 1.56014i −0.778670 0.627434i \(-0.784105\pi\)
0.360631 0.932708i \(-0.382561\pi\)
\(458\) −4.56443 1.22303i −0.213282 0.0571486i
\(459\) 8.81272 + 23.6675i 0.411343 + 1.10470i
\(460\) 32.5823 0.263431i 1.51916 0.0122825i
\(461\) 36.9326i 1.72012i −0.510192 0.860061i \(-0.670426\pi\)
0.510192 0.860061i \(-0.329574\pi\)
\(462\) 0.331588 + 1.02689i 0.0154269 + 0.0477751i
\(463\) 26.3687 + 26.3687i 1.22546 + 1.22546i 0.965664 + 0.259794i \(0.0836548\pi\)
0.259794 + 0.965664i \(0.416345\pi\)
\(464\) −8.49325 + 14.7107i −0.394289 + 0.682929i
\(465\) 10.5203 + 20.4081i 0.487866 + 0.946401i
\(466\) −1.05953 1.83516i −0.0490817 0.0850120i
\(467\) −9.85183 + 2.63979i −0.455888 + 0.122155i −0.479453 0.877567i \(-0.659165\pi\)
0.0235650 + 0.999722i \(0.492498\pi\)
\(468\) −6.69060 + 17.0859i −0.309273 + 0.789797i
\(469\) −0.0136922 0.128377i −0.000632247 0.00592791i
\(470\) 0.743194 2.86613i 0.0342810 0.132205i
\(471\) −7.13696 14.1241i −0.328854 0.650803i
\(472\) 8.95734 + 2.40011i 0.412295 + 0.110474i
\(473\) −2.80215 0.750833i −0.128843 0.0345233i
\(474\) 1.02182 + 2.02218i 0.0469336 + 0.0928817i
\(475\) 3.97713 7.15327i 0.182483 0.328215i
\(476\) −19.7923 + 14.4264i −0.907177 + 0.661232i
\(477\) −7.60287 + 19.4156i −0.348112 + 0.888979i
\(478\) 5.58092 1.49540i 0.255265 0.0683981i
\(479\) 6.85350 + 11.8706i 0.313144 + 0.542382i 0.979041 0.203662i \(-0.0652843\pi\)
−0.665897 + 0.746044i \(0.731951\pi\)
\(480\) −4.09625 + 12.8128i −0.186967 + 0.584821i
\(481\) −5.67825 + 9.83503i −0.258906 + 0.448439i
\(482\) −0.430674 0.430674i −0.0196167 0.0196167i
\(483\) 34.2805 + 7.35185i 1.55982 + 0.334521i
\(484\) 19.8436i 0.901980i
\(485\) −0.0953785 11.7968i −0.00433091 0.535667i
\(486\) 3.34661 + 3.46087i 0.151805 + 0.156988i
\(487\) 22.0811 + 5.91662i 1.00059 + 0.268108i 0.721693 0.692213i \(-0.243364\pi\)
0.278898 + 0.960321i \(0.410031\pi\)
\(488\) 1.37139 + 5.11811i 0.0620800 + 0.231686i
\(489\) −3.92413 2.56713i −0.177455 0.116090i
\(490\) −1.05774 4.71692i −0.0477836 0.213089i
\(491\) 23.7476i 1.07172i −0.844308 0.535858i \(-0.819988\pi\)
0.844308 0.535858i \(-0.180012\pi\)
\(492\) 4.49016 13.6631i 0.202432 0.615980i
\(493\) −6.21740 + 23.2037i −0.280018 + 1.04504i
\(494\) 0.811730 + 1.40596i 0.0365215 + 0.0632570i
\(495\) −4.77757 1.82642i −0.214736 0.0820914i
\(496\) 20.3744 0.914836
\(497\) 30.6527 11.8205i 1.37496 0.530220i
\(498\) 3.74205 0.782280i 0.167685 0.0350548i
\(499\) 2.80187 + 1.61766i 0.125429 + 0.0724165i 0.561402 0.827543i \(-0.310262\pi\)
−0.435973 + 0.899960i \(0.643596\pi\)
\(500\) 20.6963 + 5.01091i 0.925568 + 0.224095i
\(501\) −0.525914 + 9.42938i −0.0234961 + 0.421274i
\(502\) −1.43093 5.34029i −0.0638654 0.238349i
\(503\) −2.62851 + 2.62851i −0.117199 + 0.117199i −0.763274 0.646075i \(-0.776409\pi\)
0.646075 + 0.763274i \(0.276409\pi\)
\(504\) −4.82859 + 8.26424i −0.215083 + 0.368118i
\(505\) −10.6573 + 41.1001i −0.474246 + 1.82893i
\(506\) −1.56021 0.900788i −0.0693598 0.0400449i
\(507\) 3.46937 3.10281i 0.154080 0.137801i
\(508\) −3.11012 + 11.6071i −0.137989 + 0.514983i
\(509\) 6.91189 11.9717i 0.306364 0.530638i −0.671200 0.741276i \(-0.734221\pi\)
0.977564 + 0.210638i \(0.0675541\pi\)
\(510\) −0.276802 + 5.80694i −0.0122570 + 0.257136i
\(511\) 3.65085 0.389385i 0.161504 0.0172254i
\(512\) 14.3017 + 14.3017i 0.632050 + 0.632050i
\(513\) −8.46757 + 0.803863i −0.373852 + 0.0354914i
\(514\) −5.27399 + 3.04494i −0.232626 + 0.134306i
\(515\) 13.9240 24.5737i 0.613563 1.08285i
\(516\) −5.66069 11.2025i −0.249198 0.493164i
\(517\) 2.31162 2.31162i 0.101665 0.101665i
\(518\) −1.81503 + 2.24842i −0.0797478 + 0.0987899i
\(519\) 1.25472 1.91797i 0.0550759 0.0841895i
\(520\) −6.07331 + 6.17232i −0.266332 + 0.270674i
\(521\) −9.49156 + 5.47996i −0.415833 + 0.240081i −0.693293 0.720656i \(-0.743841\pi\)
0.277460 + 0.960737i \(0.410507\pi\)
\(522\) 0.685982 + 4.52762i 0.0300246 + 0.198168i
\(523\) −13.2418 + 3.54814i −0.579026 + 0.155149i −0.536433 0.843943i \(-0.680229\pi\)
−0.0425929 + 0.999093i \(0.513562\pi\)
\(524\) 4.09392 0.178844
\(525\) 20.5627 + 10.1082i 0.897428 + 0.441160i
\(526\) −1.71360 −0.0747163
\(527\) 27.8315 7.45743i 1.21236 0.324851i
\(528\) −3.38313 + 3.02569i −0.147232 + 0.131676i
\(529\) −30.7730 + 17.7668i −1.33796 + 0.772469i
\(530\) −3.36642 + 3.42129i −0.146228 + 0.148612i
\(531\) −21.1381 + 9.24175i −0.917313 + 0.401058i
\(532\) −2.96786 7.69622i −0.128673 0.333674i
\(533\) 9.89970 9.89970i 0.428804 0.428804i
\(534\) 0.433125 0.218860i 0.0187432 0.00947101i
\(535\) 2.40383 4.24239i 0.103926 0.183415i
\(536\) −0.0509605 + 0.0294221i −0.00220116 + 0.00127084i
\(537\) −0.130686 + 0.397664i −0.00563952 + 0.0171605i
\(538\) −2.19394 2.19394i −0.0945876 0.0945876i
\(539\) 1.63372 5.08108i 0.0703692 0.218857i
\(540\) −7.88956 20.6755i −0.339513 0.889733i
\(541\) −3.53276 + 6.11892i −0.151885 + 0.263073i −0.931920 0.362663i \(-0.881868\pi\)
0.780035 + 0.625735i \(0.215201\pi\)
\(542\) −0.450866 + 1.68265i −0.0193663 + 0.0722762i
\(543\) 21.5761 + 24.1250i 0.925919 + 1.03530i
\(544\) 14.6193 + 8.44044i 0.626796 + 0.361881i
\(545\) 1.32440 5.10756i 0.0567312 0.218784i
\(546\) −3.81619 + 2.46839i −0.163318 + 0.105637i
\(547\) −19.7665 + 19.7665i −0.845154 + 0.845154i −0.989524 0.144370i \(-0.953885\pi\)
0.144370 + 0.989524i \(0.453885\pi\)
\(548\) 4.34647 + 16.2212i 0.185672 + 0.692937i
\(549\) −10.6121 7.81955i −0.452915 0.333730i
\(550\) −0.845892 0.818969i −0.0360690 0.0349210i
\(551\) −7.00653 4.04522i −0.298488 0.172332i
\(552\) −3.26991 15.6417i −0.139176 0.665753i
\(553\) 1.73605 11.0709i 0.0738242 0.470782i
\(554\) 3.47282 0.147546
\(555\) −2.91094 13.3834i −0.123562 0.568093i
\(556\) −9.86837 17.0925i −0.418512 0.724884i
\(557\) −11.3316 + 42.2902i −0.480137 + 1.79189i 0.120891 + 0.992666i \(0.461425\pi\)
−0.601028 + 0.799228i \(0.705242\pi\)
\(558\) 4.29166 3.42788i 0.181681 0.145114i
\(559\) 12.2184i 0.516783i
\(560\) 16.3336 12.1088i 0.690220 0.511690i
\(561\) −3.51392 + 5.37140i −0.148358 + 0.226781i
\(562\) 0.154136 + 0.575242i 0.00650182 + 0.0242651i
\(563\) −10.7151 2.87110i −0.451587 0.121002i 0.0258549 0.999666i \(-0.491769\pi\)
−0.477442 + 0.878663i \(0.658436\pi\)
\(564\) 14.1223 + 0.787658i 0.594657 + 0.0331664i
\(565\) 0.305227 + 37.7519i 0.0128410 + 1.58823i
\(566\) 8.14252i 0.342256i
\(567\) −3.44507 23.5612i −0.144679 0.989479i
\(568\) −10.5881 10.5881i −0.444266 0.444266i
\(569\) −6.90318 + 11.9567i −0.289396 + 0.501249i −0.973666 0.227980i \(-0.926788\pi\)
0.684269 + 0.729229i \(0.260121\pi\)
\(570\) −1.86495 0.596226i −0.0781143 0.0249731i
\(571\) 6.56260 + 11.3668i 0.274636 + 0.475684i 0.970043 0.242932i \(-0.0781092\pi\)
−0.695407 + 0.718616i \(0.744776\pi\)
\(572\) −4.50464 + 1.20701i −0.188348 + 0.0504678i
\(573\) 5.04736 + 24.1442i 0.210857 + 1.00864i
\(574\) 2.87873 2.09828i 0.120156 0.0875804i
\(575\) −36.7852 + 10.4969i −1.53405 + 0.437752i
\(576\) −17.2950 1.93524i −0.720625 0.0806350i
\(577\) 14.7331 + 3.94772i 0.613347 + 0.164346i 0.552101 0.833777i \(-0.313826\pi\)
0.0612453 + 0.998123i \(0.480493\pi\)
\(578\) 1.97566 + 0.529377i 0.0821767 + 0.0220192i
\(579\) 10.5370 5.32440i 0.437903 0.221275i
\(580\) 5.28344 20.3756i 0.219383 0.846050i
\(581\) −17.2856 7.66426i −0.717126 0.317967i
\(582\) −2.76247 + 0.577496i −0.114508 + 0.0239380i
\(583\) −5.11885 + 1.37159i −0.212001 + 0.0568055i
\(584\) −0.836718 1.44924i −0.0346236 0.0599699i
\(585\) 2.22239 21.4274i 0.0918845 0.885915i
\(586\) −1.71065 + 2.96293i −0.0706662 + 0.122397i
\(587\) −5.54217 5.54217i −0.228750 0.228750i 0.583421 0.812170i \(-0.301714\pi\)
−0.812170 + 0.583421i \(0.801714\pi\)
\(588\) 21.0986 9.38642i 0.870090 0.387089i
\(589\) 9.70404i 0.399848i
\(590\) −5.31040 + 0.0429351i −0.218626 + 0.00176761i
\(591\) 1.04436 18.7248i 0.0429591 0.770237i
\(592\) −11.7397 3.14565i −0.482499 0.129285i
\(593\) 2.24492 + 8.37814i 0.0921877 + 0.344049i 0.996578 0.0826570i \(-0.0263406\pi\)
−0.904390 + 0.426706i \(0.859674\pi\)
\(594\) −0.203568 + 1.20653i −0.00835252 + 0.0495043i
\(595\) 17.8797 22.5191i 0.732998 0.923195i
\(596\) 33.2438i 1.36172i
\(597\) 26.9528 + 8.85763i 1.10311 + 0.362519i
\(598\) 1.96388 7.32931i 0.0803091 0.299718i
\(599\) −7.93869 13.7502i −0.324366 0.561819i 0.657018 0.753875i \(-0.271818\pi\)
−0.981384 + 0.192056i \(0.938484\pi\)
\(600\) 0.412888 10.4352i 0.0168561 0.426014i
\(601\) 41.5249 1.69384 0.846919 0.531722i \(-0.178455\pi\)
0.846919 + 0.531722i \(0.178455\pi\)
\(602\) 0.481625 3.07135i 0.0196296 0.125179i
\(603\) 0.0533783 0.136313i 0.00217373 0.00555110i
\(604\) −25.0976 14.4901i −1.02120 0.589593i
\(605\) 6.21139 + 22.4535i 0.252529 + 0.912864i
\(606\) 10.1415 + 0.565634i 0.411972 + 0.0229773i
\(607\) −3.95710 14.7681i −0.160614 0.599418i −0.998559 0.0536641i \(-0.982910\pi\)
0.837945 0.545754i \(-0.183757\pi\)
\(608\) −4.02013 + 4.02013i −0.163038 + 0.163038i
\(609\) 10.3194 20.1620i 0.418162 0.817006i
\(610\) −1.53839 2.61551i −0.0622877 0.105899i
\(611\) 11.9242 + 6.88444i 0.482402 + 0.278515i
\(612\) −27.4578 + 4.16015i −1.10992 + 0.168164i
\(613\) 7.98165 29.7879i 0.322376 1.20312i −0.594548 0.804060i \(-0.702669\pi\)
0.916924 0.399063i \(-0.130664\pi\)
\(614\) 3.72926 6.45927i 0.150501 0.260675i
\(615\) −0.803941 + 16.8656i −0.0324180 + 0.680088i
\(616\) −2.41892 + 0.257992i −0.0974611 + 0.0103948i
\(617\) −13.2098 13.2098i −0.531808 0.531808i 0.389302 0.921110i \(-0.372716\pi\)
−0.921110 + 0.389302i \(0.872716\pi\)
\(618\) −6.41899 2.10950i −0.258210 0.0848566i
\(619\) 14.7495 8.51561i 0.592831 0.342271i −0.173385 0.984854i \(-0.555471\pi\)
0.766216 + 0.642583i \(0.222137\pi\)
\(620\) −24.3337 + 6.73153i −0.977266 + 0.270345i
\(621\) 30.6414 + 25.3280i 1.22960 + 1.01638i
\(622\) −5.16425 + 5.16425i −0.207068 + 0.207068i
\(623\) −2.37125 0.371840i −0.0950020 0.0148974i
\(624\) −15.9973 10.4652i −0.640403 0.418945i
\(625\) −24.9869 + 0.808350i −0.999477 + 0.0323340i
\(626\) −3.31107 + 1.91165i −0.132337 + 0.0764047i
\(627\) −1.44110 1.61134i −0.0575518 0.0643508i
\(628\) 16.8086 4.50384i 0.670735 0.179723i
\(629\) −17.1879 −0.685327
\(630\) 1.40327 5.29864i 0.0559077 0.211103i
\(631\) 6.51082 0.259191 0.129596 0.991567i \(-0.458632\pi\)
0.129596 + 0.991567i \(0.458632\pi\)
\(632\) −4.93356 + 1.32194i −0.196247 + 0.0525841i
\(633\) −29.4466 32.9253i −1.17040 1.30866i
\(634\) 1.17480 0.678272i 0.0466573 0.0269376i
\(635\) −0.114059 14.1073i −0.00452628 0.559831i
\(636\) −19.1875 12.5523i −0.760834 0.497730i
\(637\) 22.4521 + 1.10758i 0.889586 + 0.0438840i
\(638\) −0.822967 + 0.822967i −0.0325816 + 0.0325816i
\(639\) 37.0206 + 4.14246i 1.46451 + 0.163873i
\(640\) −16.9994 9.63221i −0.671961 0.380746i
\(641\) 36.6801 21.1773i 1.44878 0.836451i 0.450367 0.892843i \(-0.351293\pi\)
0.998409 + 0.0563924i \(0.0179598\pi\)
\(642\) −1.10817 0.364183i −0.0437360 0.0143732i
\(643\) 11.2098 + 11.2098i 0.442072 + 0.442072i 0.892708 0.450636i \(-0.148803\pi\)
−0.450636 + 0.892708i \(0.648803\pi\)
\(644\) −15.6269 + 35.2441i −0.615787 + 1.38881i
\(645\) 9.91181 + 10.9040i 0.390277 + 0.429347i
\(646\) −1.22854 + 2.12790i −0.0483363 + 0.0837209i
\(647\) −6.15237 + 22.9610i −0.241875 + 0.902689i 0.733054 + 0.680171i \(0.238094\pi\)
−0.974929 + 0.222518i \(0.928572\pi\)
\(648\) −9.18064 + 5.78825i −0.360650 + 0.227384i
\(649\) −5.07783 2.93169i −0.199322 0.115079i
\(650\) 2.40969 4.33408i 0.0945160 0.169996i
\(651\) −27.1320 + 1.37237i −1.06339 + 0.0537874i
\(652\) 3.64616 3.64616i 0.142794 0.142794i
\(653\) 5.64046 + 21.0505i 0.220728 + 0.823769i 0.984071 + 0.177775i \(0.0568900\pi\)
−0.763343 + 0.645994i \(0.776443\pi\)
\(654\) −1.26030 0.0702921i −0.0492817 0.00274864i
\(655\) −4.63237 + 1.28147i −0.181002 + 0.0500712i
\(656\) 12.9759 + 7.49163i 0.506623 + 0.292499i
\(657\) 3.87653 + 1.51800i 0.151238 + 0.0592227i
\(658\) 2.72604 + 2.20058i 0.106272 + 0.0857876i
\(659\) 42.6184 1.66018 0.830088 0.557632i \(-0.188290\pi\)
0.830088 + 0.557632i \(0.188290\pi\)
\(660\) 3.04092 4.73143i 0.118368 0.184171i
\(661\) −22.7467 39.3985i −0.884744 1.53242i −0.846006 0.533173i \(-0.821000\pi\)
−0.0387381 0.999249i \(-0.512334\pi\)
\(662\) −0.497076 + 1.85511i −0.0193194 + 0.0721010i
\(663\) −25.6828 8.44027i −0.997439 0.327793i
\(664\) 8.61819i 0.334451i
\(665\) 5.76727 + 7.77948i 0.223645 + 0.301675i
\(666\) −3.00210 + 1.31254i −0.116329 + 0.0508601i
\(667\) 9.78693 + 36.5253i 0.378951 + 1.41427i
\(668\) −10.0311 2.68783i −0.388115 0.103995i
\(669\) 2.10809 37.7971i 0.0815035 1.46132i
\(670\) 0.0236350 0.0240203i 0.000913098 0.000927984i
\(671\) 3.35026i 0.129335i
\(672\) −11.8086 10.6715i −0.455527 0.411664i
\(673\) −32.1249 32.1249i −1.23832 1.23832i −0.960686 0.277636i \(-0.910449\pi\)
−0.277636 0.960686i \(-0.589551\pi\)
\(674\) −3.28666 + 5.69266i −0.126597 + 0.219273i
\(675\) 15.3991 + 20.9253i 0.592710 + 0.805416i
\(676\) 2.55910 + 4.43248i 0.0984268 + 0.170480i
\(677\) −41.1280 + 11.0202i −1.58068 + 0.423542i −0.939136 0.343545i \(-0.888372\pi\)
−0.641543 + 0.767087i \(0.721705\pi\)
\(678\) 8.84036 1.84809i 0.339512 0.0709753i
\(679\) 12.7606 + 5.65793i 0.489706 + 0.217131i
\(680\) −12.6861 3.28953i −0.486489 0.126148i
\(681\) −19.8615 + 10.0361i −0.761094 + 0.384584i
\(682\) 1.34841 + 0.361305i 0.0516332 + 0.0138351i
\(683\) −2.25177 0.603360i −0.0861617 0.0230869i 0.215481 0.976508i \(-0.430868\pi\)
−0.301642 + 0.953421i \(0.597535\pi\)
\(684\) 1.04008 9.29507i 0.0397685 0.355406i
\(685\) −9.99568 16.9942i −0.381915 0.649316i
\(686\) 5.60017 + 1.16343i 0.213815 + 0.0444201i
\(687\) 5.42298 + 25.9409i 0.206899 + 0.989708i
\(688\) 12.6307 3.38438i 0.481540 0.129028i
\(689\) −11.1600 19.3297i −0.425163 0.736404i
\(690\) 4.19306 + 8.13403i 0.159627 + 0.309657i
\(691\) 8.27824 14.3383i 0.314919 0.545456i −0.664501 0.747287i \(-0.731356\pi\)
0.979420 + 0.201831i \(0.0646893\pi\)
\(692\) 1.78210 + 1.78210i 0.0677454 + 0.0677454i
\(693\) 4.30143 4.25711i 0.163398 0.161714i
\(694\) 5.94884i 0.225815i
\(695\) 16.5166 + 16.2517i 0.626510 + 0.616460i
\(696\) −10.3072 0.574875i −0.390694 0.0217906i
\(697\) 20.4672 + 5.48418i 0.775252 + 0.207728i
\(698\) −0.738875 2.75752i −0.0279668 0.104374i
\(699\) −6.50607 + 9.94523i −0.246082 + 0.376163i
\(700\) −15.5071 + 19.8584i −0.586112 + 0.750578i
\(701\) 26.5973i 1.00457i 0.864703 + 0.502284i \(0.167507\pi\)
−0.864703 + 0.502284i \(0.832493\pi\)
\(702\) −5.13039 + 0.487050i −0.193634 + 0.0183825i
\(703\) 1.49823 5.59148i 0.0565069 0.210886i
\(704\) −2.21152 3.83047i −0.0833500 0.144366i
\(705\) −16.2263 + 3.52929i −0.611119 + 0.132921i
\(706\) −3.64717 −0.137263
\(707\) −39.0912 31.5562i −1.47017 1.18679i
\(708\) −5.19111 24.8318i −0.195094 0.933235i
\(709\) 13.7850 + 7.95880i 0.517708 + 0.298899i 0.735997 0.676985i \(-0.236714\pi\)
−0.218288 + 0.975884i \(0.570047\pi\)
\(710\) 7.46067 + 4.22736i 0.279994 + 0.158650i
\(711\) 7.53760 10.2295i 0.282682 0.383636i
\(712\) 0.283144 + 1.05671i 0.0106113 + 0.0396018i
\(713\) 32.0712 32.0712i 1.20108 1.20108i
\(714\) −6.12324 3.13401i −0.229156 0.117287i
\(715\) 4.71930 2.77580i 0.176492 0.103809i
\(716\) −0.398625 0.230146i −0.0148973 0.00860096i
\(717\) −21.6013 24.1532i −0.806715 0.902018i
\(718\) 1.11607 4.16523i 0.0416514 0.155445i
\(719\) −10.6906 + 18.5167i −0.398694 + 0.690558i −0.993565 0.113263i \(-0.963870\pi\)
0.594871 + 0.803821i \(0.297203\pi\)
\(720\) 22.7660 3.63782i 0.848440 0.135573i
\(721\) 19.6848 + 27.0065i 0.733099 + 1.00577i
\(722\) 3.56409 + 3.56409i 0.132642 + 0.132642i
\(723\) −1.06644 + 3.24508i −0.0396615 + 0.120686i
\(724\) −30.8223 + 17.7952i −1.14550 + 0.661355i
\(725\) 0.399580 + 24.7093i 0.0148400 + 0.917681i
\(726\) 4.97418 2.51348i 0.184609 0.0932840i
\(727\) 7.43836 7.43836i 0.275873 0.275873i −0.555586 0.831459i \(-0.687506\pi\)
0.831459 + 0.555586i \(0.187506\pi\)
\(728\) −3.68643 9.55960i −0.136628 0.354302i
\(729\) 8.85885 25.5053i 0.328106 0.944641i
\(730\) 0.683099 + 0.672141i 0.0252826 + 0.0248771i
\(731\) 16.0148 9.24617i 0.592330 0.341982i
\(732\) 10.8046 9.66302i 0.399349 0.357156i
\(733\) −35.2708 + 9.45077i −1.30276 + 0.349072i −0.842491 0.538710i \(-0.818912\pi\)
−0.460264 + 0.887782i \(0.652245\pi\)
\(734\) −4.65810 −0.171934
\(735\) −20.9354 + 17.2252i −0.772215 + 0.635361i
\(736\) 26.5725 0.979475
\(737\) 0.0359385 0.00962968i 0.00132381 0.000354714i
\(738\) 3.99367 0.605083i 0.147009 0.0222734i
\(739\) −33.2198 + 19.1794i −1.22201 + 0.705527i −0.965346 0.260974i \(-0.915956\pi\)
−0.256663 + 0.966501i \(0.582623\pi\)
\(740\) 15.0604 0.121765i 0.553632 0.00447616i
\(741\) 4.98446 7.61928i 0.183109 0.279901i
\(742\) −2.04337 5.29885i −0.0750146 0.194527i
\(743\) 30.8182 30.8182i 1.13061 1.13061i 0.140534 0.990076i \(-0.455118\pi\)
0.990076 0.140534i \(-0.0448819\pi\)
\(744\) 5.58432 + 11.0514i 0.204731 + 0.405164i
\(745\) −10.4059 37.6163i −0.381243 1.37815i
\(746\) −9.31740 + 5.37940i −0.341134 + 0.196954i
\(747\) −13.3806 16.7524i −0.489571 0.612938i
\(748\) −4.99090 4.99090i −0.182485 0.182485i
\(749\) 3.39837 + 4.66239i 0.124174 + 0.170360i
\(750\) 1.36541 + 5.82265i 0.0498578 + 0.212613i
\(751\) −19.9356 + 34.5294i −0.727459 + 1.26000i 0.230495 + 0.973074i \(0.425966\pi\)
−0.957954 + 0.286923i \(0.907368\pi\)
\(752\) −3.81385 + 14.2335i −0.139077 + 0.519042i
\(753\) −23.1118 + 20.6699i −0.842242 + 0.753254i
\(754\) −4.24517 2.45095i −0.154600 0.0892583i
\(755\) 32.9342 + 8.53991i 1.19860 + 0.310799i
\(756\) 26.1357 + 1.59349i 0.950545 + 0.0579545i
\(757\) 0.798673 0.798673i 0.0290283 0.0290283i −0.692444 0.721472i \(-0.743466\pi\)
0.721472 + 0.692444i \(0.243466\pi\)
\(758\) 1.52354 + 5.68591i 0.0553373 + 0.206522i
\(759\) −0.562653 + 10.0881i −0.0204230 + 0.366175i
\(760\) 2.17595 3.84023i 0.0789301 0.139300i
\(761\) 37.3941 + 21.5895i 1.35554 + 0.782619i 0.989019 0.147791i \(-0.0472164\pi\)
0.366518 + 0.930411i \(0.380550\pi\)
\(762\) −3.30350 + 0.690601i −0.119673 + 0.0250178i
\(763\) 4.85791 + 3.92153i 0.175868 + 0.141969i
\(764\) −27.1236 −0.981299
\(765\) 29.7671 13.3021i 1.07623 0.480939i
\(766\) 1.56829 + 2.71637i 0.0566648 + 0.0981463i
\(767\) 6.39162 23.8538i 0.230788 0.861312i
\(768\) 4.81457 14.6502i 0.173731 0.528644i
\(769\) 44.1875i 1.59344i 0.604348 + 0.796720i \(0.293434\pi\)
−0.604348 + 0.796720i \(0.706566\pi\)
\(770\) 1.29571 0.511732i 0.0466943 0.0184415i
\(771\) 28.5812 + 18.6975i 1.02933 + 0.673376i
\(772\) 3.36001 + 12.5397i 0.120929 + 0.451315i
\(773\) −21.1314 5.66214i −0.760043 0.203653i −0.142075 0.989856i \(-0.545377\pi\)
−0.617968 + 0.786203i \(0.712044\pi\)
\(774\) 2.09113 2.83793i 0.0751640 0.102007i
\(775\) 25.4272 15.2338i 0.913370 0.547214i
\(776\) 6.36214i 0.228388i
\(777\) 15.8454 + 3.39822i 0.568450 + 0.121911i
\(778\) 8.13643 + 8.13643i 0.291705 + 0.291705i
\(779\) −3.56817 + 6.18024i −0.127843 + 0.221430i
\(780\) 22.5636 + 7.21360i 0.807908 + 0.258288i
\(781\) 4.73385 + 8.19927i 0.169391 + 0.293393i
\(782\) 11.0928 2.97231i 0.396678 0.106289i
\(783\) 20.9281 14.8856i 0.747911 0.531966i
\(784\) 5.07407 + 23.5165i 0.181217 + 0.839876i
\(785\) −17.6095 + 10.3576i −0.628512 + 0.369679i
\(786\) 0.518555 + 1.02622i 0.0184962 + 0.0366041i
\(787\) −0.291239 0.0780372i −0.0103815 0.00278173i 0.253625 0.967303i \(-0.418377\pi\)
−0.264006 + 0.964521i \(0.585044\pi\)
\(788\) 19.9197 + 5.33748i 0.709612 + 0.190140i
\(789\) 4.33425 + 8.57748i 0.154303 + 0.305367i
\(790\) 2.52120 1.48292i 0.0897003 0.0527600i
\(791\) −40.8360 18.1063i −1.45196 0.643787i
\(792\) −2.56845 1.00577i −0.0912659 0.0357385i
\(793\) 13.6298 3.65209i 0.484007 0.129689i
\(794\) 1.37270 + 2.37759i 0.0487153 + 0.0843774i
\(795\) 25.6402 + 8.19718i 0.909365 + 0.290724i
\(796\) −15.5988 + 27.0180i −0.552886 + 0.957626i
\(797\) 8.45240 + 8.45240i 0.299399 + 0.299399i 0.840779 0.541379i \(-0.182098\pi\)
−0.541379 + 0.840779i \(0.682098\pi\)
\(798\) 1.55329 1.71879i 0.0549858 0.0608446i
\(799\) 20.8390i 0.737231i
\(800\) 16.8447 + 4.22284i 0.595552 + 0.149300i
\(801\) −2.19103 1.61446i −0.0774163 0.0570441i
\(802\) −1.38761 0.371808i −0.0489981 0.0131290i
\(803\) 0.273853 + 1.02203i 0.00966407 + 0.0360668i
\(804\) 0.134712 + 0.0881271i 0.00475092 + 0.00310800i
\(805\) 6.65023 44.7711i 0.234390 1.57797i
\(806\) 5.87955i 0.207098i
\(807\) −5.43269 + 16.5311i −0.191240 + 0.581922i
\(808\) −5.92642 + 22.1177i −0.208491 + 0.778098i
\(809\) 18.5676 + 32.1600i 0.652801 + 1.13068i 0.982440 + 0.186577i \(0.0597394\pi\)
−0.329640 + 0.944107i \(0.606927\pi\)
\(810\) 4.18341 4.59654i 0.146990 0.161506i
\(811\) 23.5491 0.826921 0.413461 0.910522i \(-0.364320\pi\)
0.413461 + 0.910522i \(0.364320\pi\)
\(812\) 19.3797 + 15.6442i 0.680093 + 0.549003i
\(813\) 9.56300 1.99915i 0.335389 0.0701134i
\(814\) −0.721171 0.416368i −0.0252770 0.0145937i
\(815\) −2.98441 + 5.26703i −0.104539 + 0.184496i
\(816\) 1.61116 28.8874i 0.0564019 1.01126i
\(817\) 1.61194 + 6.01583i 0.0563945 + 0.210467i
\(818\) −5.79994 + 5.79994i −0.202790 + 0.202790i
\(819\) 22.0081 + 12.8588i 0.769024 + 0.449322i
\(820\) −17.9727 4.66036i −0.627633 0.162747i
\(821\) −35.4996 20.4957i −1.23895 0.715306i −0.270067 0.962842i \(-0.587046\pi\)
−0.968879 + 0.247536i \(0.920379\pi\)
\(822\) −3.51563 + 3.14419i −0.122622 + 0.109666i
\(823\) −6.66893 + 24.8888i −0.232464 + 0.867568i 0.746812 + 0.665036i \(0.231584\pi\)
−0.979276 + 0.202532i \(0.935083\pi\)
\(824\) 7.61596 13.1912i 0.265315 0.459538i
\(825\) −1.95985 + 6.30560i −0.0682333 + 0.219533i
\(826\) 2.54694 5.74423i 0.0886195 0.199867i
\(827\) −19.5668 19.5668i −0.680404 0.680404i 0.279687 0.960091i \(-0.409769\pi\)
−0.960091 + 0.279687i \(0.909769\pi\)
\(828\) −34.1570 + 27.2822i −1.18704 + 0.948121i
\(829\) −21.9279 + 12.6601i −0.761588 + 0.439703i −0.829866 0.557963i \(-0.811583\pi\)
0.0682778 + 0.997666i \(0.478250\pi\)
\(830\) −1.31588 4.75675i −0.0456747 0.165109i
\(831\) −8.78391 17.3834i −0.304710 0.603023i
\(832\) 13.1727 13.1727i 0.456680 0.456680i
\(833\) 15.5388 + 30.2665i 0.538386 + 1.04867i
\(834\) 3.03461 4.63873i 0.105080 0.160626i
\(835\) 12.1918 0.0985717i 0.421915 0.00341122i
\(836\) 2.05866 1.18857i 0.0712002 0.0411075i
\(837\) −28.0134 12.8119i −0.968286 0.442844i
\(838\) −7.70479 + 2.06449i −0.266157 + 0.0713167i
\(839\) −50.7484 −1.75203 −0.876014 0.482286i \(-0.839807\pi\)
−0.876014 + 0.482286i \(0.839807\pi\)
\(840\) 11.0448 + 5.54076i 0.381083 + 0.191174i
\(841\) −4.57160 −0.157641
\(842\) −0.129000 + 0.0345654i −0.00444563 + 0.00119120i
\(843\) 2.48954 2.22651i 0.0857444 0.0766851i
\(844\) 42.0656 24.2866i 1.44796 0.835978i
\(845\) −4.28313 4.21443i −0.147344 0.144981i
\(846\) 1.59136 + 3.63981i 0.0547120 + 0.125139i
\(847\) −27.2324 4.27036i −0.935715 0.146731i
\(848\) 16.8908 16.8908i 0.580031 0.580031i
\(849\) −40.7578 + 20.5951i −1.39880 + 0.706823i
\(850\) 7.50426 0.121353i 0.257394 0.00416238i
\(851\) −23.4310 + 13.5279i −0.803204 + 0.463730i
\(852\) −12.7890 + 38.9155i −0.438143 + 1.33322i
\(853\) −18.8448 18.8448i −0.645233 0.645233i 0.306604 0.951837i \(-0.400807\pi\)
−0.951837 + 0.306604i \(0.900807\pi\)
\(854\) 3.57009 0.380772i 0.122166 0.0130297i
\(855\) 1.73265 + 10.8432i 0.0592552 + 0.370829i
\(856\) 1.31482 2.27733i 0.0449395 0.0778375i
\(857\) 3.22108 12.0212i 0.110030 0.410637i −0.888837 0.458223i \(-0.848486\pi\)
0.998867 + 0.0475860i \(0.0151528\pi\)
\(858\) −0.873141 0.976291i −0.0298085 0.0333300i
\(859\) −3.33705 1.92665i −0.113859 0.0657364i 0.441989 0.897020i \(-0.354273\pi\)
−0.555848 + 0.831284i \(0.687606\pi\)
\(860\) −13.9670 + 8.21515i −0.476272 + 0.280134i
\(861\) −17.7843 9.10240i −0.606087 0.310209i
\(862\) 3.56217 3.56217i 0.121328 0.121328i
\(863\) −12.9186 48.2127i −0.439753 1.64118i −0.729429 0.684056i \(-0.760214\pi\)
0.289676 0.957125i \(-0.406452\pi\)
\(864\) −6.29759 16.9128i −0.214248 0.575387i
\(865\) −2.57433 1.45867i −0.0875297 0.0495961i
\(866\) 0.194509 + 0.112300i 0.00660967 + 0.00381610i
\(867\) −2.34727 11.2282i −0.0797176 0.381331i
\(868\) 4.62795 29.5128i 0.157083 1.00173i
\(869\) 3.22945 0.109552
\(870\) 5.77677 1.25647i 0.195851 0.0425983i
\(871\) 0.0783524 + 0.135710i 0.00265487 + 0.00459837i
\(872\) 0.736484 2.74860i 0.0249405 0.0930793i
\(873\) 9.87787 + 12.3670i 0.334315 + 0.418559i
\(874\) 3.86774i 0.130828i
\(875\) 11.3306 27.3243i 0.383044 0.923730i
\(876\) −2.50620 + 3.83099i −0.0846765 + 0.129437i
\(877\) −11.7017 43.6713i −0.395138 1.47467i −0.821546 0.570143i \(-0.806888\pi\)
0.426408 0.904531i \(-0.359779\pi\)
\(878\) 4.56370 + 1.22284i 0.154018 + 0.0412689i
\(879\) 19.1579 + 1.06851i 0.646179 + 0.0360399i
\(880\) 4.17667 + 4.10967i 0.140795 + 0.138537i
\(881\) 25.2055i 0.849195i 0.905382 + 0.424597i \(0.139584\pi\)
−0.905382 + 0.424597i \(0.860416\pi\)
\(882\) 5.02534 + 4.09984i 0.169212 + 0.138049i
\(883\) −14.2942 14.2942i −0.481039 0.481039i 0.424424 0.905463i \(-0.360476\pi\)
−0.905463 + 0.424424i \(0.860476\pi\)
\(884\) 14.8638 25.7449i 0.499925 0.865895i
\(885\) 13.6467 + 26.4729i 0.458728 + 0.889876i
\(886\) −1.40912 2.44067i −0.0473403 0.0819958i
\(887\) 37.5853 10.0709i 1.26199 0.338149i 0.435033 0.900415i \(-0.356737\pi\)
0.826957 + 0.562266i \(0.190070\pi\)
\(888\) −1.51144 7.23000i −0.0507206 0.242623i
\(889\) 15.2598 + 6.76605i 0.511796 + 0.226926i
\(890\) −0.317623 0.540010i −0.0106468 0.0181012i
\(891\) 6.55421 2.03273i 0.219574 0.0680989i
\(892\) 40.2091 + 10.7740i 1.34630 + 0.360740i
\(893\) −6.77923 1.81649i −0.226858 0.0607865i
\(894\) −8.33323 + 4.21082i −0.278705 + 0.140831i
\(895\) 0.523094 + 0.135639i 0.0174851 + 0.00453393i
\(896\) 18.6823 13.6174i 0.624133 0.454924i
\(897\) −41.6545 + 8.70792i −1.39080 + 0.290749i
\(898\) −2.80681 + 0.752081i −0.0936643 + 0.0250973i
\(899\) −14.6503 25.3750i −0.488613 0.846303i
\(900\) −25.9883 + 11.8665i −0.866276 + 0.395549i
\(901\) 16.8905 29.2553i 0.562705 0.974634i
\(902\) 0.725914 + 0.725914i 0.0241703 + 0.0241703i
\(903\) −16.5920 + 5.35767i −0.552147 + 0.178292i
\(904\) 20.3599i 0.677161i
\(905\) 29.3060 29.7837i 0.974163 0.990044i
\(906\) 0.453252 8.12659i 0.0150583 0.269988i
\(907\) −2.32776 0.623721i −0.0772920 0.0207103i 0.219966 0.975508i \(-0.429405\pi\)
−0.297258 + 0.954797i \(0.596072\pi\)
\(908\) −6.33337 23.6365i −0.210180 0.784404i
\(909\) −22.8200 52.1946i −0.756891 1.73119i
\(910\) 3.49431 + 4.71349i 0.115835 + 0.156251i
\(911\) 19.3662i 0.641631i 0.947142 + 0.320815i \(0.103957\pi\)
−0.947142 + 0.320815i \(0.896043\pi\)
\(912\) 9.25703 + 3.04218i 0.306531 + 0.100737i
\(913\) 1.41034 5.26347i 0.0466755 0.174196i
\(914\) 5.33185 + 9.23503i 0.176362 + 0.305468i
\(915\) −9.20096 + 14.3160i −0.304174 + 0.473272i
\(916\) −29.1421 −0.962883
\(917\) 0.881015 5.61830i 0.0290937 0.185533i
\(918\) −4.52077 6.35591i −0.149208 0.209776i
\(919\) −29.5591 17.0659i −0.975063 0.562953i −0.0742872 0.997237i \(-0.523668\pi\)
−0.900776 + 0.434284i \(0.857002\pi\)
\(920\) −19.8831 + 5.50032i −0.655525 + 0.181340i
\(921\) −41.7647 2.32938i −1.37619 0.0767558i
\(922\) 2.95213 + 11.0175i 0.0972231 + 0.362842i
\(923\) −28.1966 + 28.1966i −0.928102 + 0.928102i
\(924\) 3.61432 + 5.58782i 0.118902 + 0.183826i
\(925\) −17.0031 + 4.85196i −0.559059 + 0.159531i
\(926\) −9.97388 5.75842i −0.327762 0.189233i
\(927\) 5.67652 + 37.4662i 0.186441 + 1.23055i
\(928\) 4.44297 16.5814i 0.145848 0.544311i
\(929\) −9.86232 + 17.0820i −0.323572 + 0.560443i −0.981222 0.192880i \(-0.938217\pi\)
0.657650 + 0.753323i \(0.271550\pi\)
\(930\) −4.76962 5.24709i −0.156402 0.172059i
\(931\) −11.2006 + 2.41672i −0.367085 + 0.0792047i
\(932\) −9.24073 9.24073i −0.302690 0.302690i
\(933\) 38.9120 + 12.7878i 1.27392 + 0.418655i
\(934\) 2.72793 1.57497i 0.0892606 0.0515346i
\(935\) 7.20958 + 4.08509i 0.235778 + 0.133597i
\(936\) 1.29190 11.5456i 0.0422271 0.377378i
\(937\) −17.3041 + 17.3041i −0.565300 + 0.565300i −0.930808 0.365508i \(-0.880895\pi\)
0.365508 + 0.930808i \(0.380895\pi\)
\(938\) 0.0143461 + 0.0372022i 0.000468418 + 0.00121470i
\(939\) 17.9436 + 11.7385i 0.585568 + 0.383072i
\(940\) −0.147630 18.2596i −0.00481517 0.595562i
\(941\) 3.89269 2.24744i 0.126898 0.0732646i −0.435207 0.900330i \(-0.643325\pi\)
0.562105 + 0.827066i \(0.309992\pi\)
\(942\) 3.25803 + 3.64292i 0.106152 + 0.118693i
\(943\) 32.2178 8.63274i 1.04916 0.281121i
\(944\) 26.4292 0.860196
\(945\) −30.0720 + 6.37786i −0.978241 + 0.207472i
\(946\) 0.895935 0.0291294
\(947\) −14.4891 + 3.88234i −0.470832 + 0.126159i −0.486431 0.873719i \(-0.661701\pi\)
0.0155984 + 0.999878i \(0.495035\pi\)
\(948\) 9.31460 + 10.4150i 0.302524 + 0.338263i
\(949\) −3.85939 + 2.22822i −0.125281 + 0.0723311i
\(950\) −0.614652 + 2.45182i −0.0199419 + 0.0795476i
\(951\) −6.36658 4.16495i −0.206451 0.135058i
\(952\) 9.74025 12.0660i 0.315683 0.391062i
\(953\) −21.6181 + 21.6181i −0.700277 + 0.700277i −0.964470 0.264193i \(-0.914895\pi\)
0.264193 + 0.964470i \(0.414895\pi\)
\(954\) 0.716096 6.39966i 0.0231845 0.207197i
\(955\) 30.6911 8.49019i 0.993141 0.274736i
\(956\) 30.8583 17.8160i 0.998028 0.576212i
\(957\) 6.20096 + 2.03785i 0.200448 + 0.0658743i
\(958\) −2.99334 2.99334i −0.0967106 0.0967106i
\(959\) 23.1966 2.47406i 0.749058 0.0798915i
\(960\) −1.06973 + 22.4416i −0.0345255 + 0.724300i
\(961\) −2.07218 + 3.58912i −0.0668444 + 0.115778i
\(962\) 0.907759 3.38780i 0.0292673 0.109227i
\(963\) 0.979992 + 6.46814i 0.0315798 + 0.208433i
\(964\) −3.25292 1.87807i −0.104769 0.0604887i
\(965\) −7.72710 13.1373i −0.248744 0.422904i
\(966\) −10.8140 + 0.546985i −0.347935 + 0.0175989i
\(967\) 16.1911 16.1911i 0.520672 0.520672i −0.397102 0.917774i \(-0.629984\pi\)
0.917774 + 0.397102i \(0.129984\pi\)
\(968\) 3.25174 + 12.1357i 0.104515 + 0.390055i
\(969\) 13.7587 + 0.767375i 0.441992 + 0.0246517i
\(970\) 0.971409 + 3.51154i 0.0311901 + 0.112749i
\(971\) 15.8437 + 9.14738i 0.508450 + 0.293553i 0.732196 0.681094i \(-0.238495\pi\)
−0.223747 + 0.974647i \(0.571829\pi\)
\(972\) 25.4596 + 15.2744i 0.816618 + 0.489928i
\(973\) −25.5807 + 9.86456i −0.820078 + 0.316243i
\(974\) −7.06004 −0.226218
\(975\) −27.7893 1.09954i −0.889971 0.0352135i
\(976\) 7.55064 + 13.0781i 0.241690 + 0.418619i
\(977\) −3.85716 + 14.3951i −0.123401 + 0.460540i −0.999778 0.0210868i \(-0.993287\pi\)
0.876376 + 0.481627i \(0.159954\pi\)
\(978\) 1.37582 + 0.452142i 0.0439939 + 0.0144579i
\(979\) 0.691709i 0.0221071i
\(980\) −13.8298 26.4101i −0.441777 0.843639i
\(981\) 2.83587 + 6.48630i 0.0905423 + 0.207092i
\(982\) 1.89822 + 7.08425i 0.0605746 + 0.226067i
\(983\) −11.3586 3.04352i −0.362283 0.0970733i 0.0730860 0.997326i \(-0.476715\pi\)
−0.435368 + 0.900252i \(0.643382\pi\)
\(984\) −0.507079 + 9.09168i −0.0161651 + 0.289832i
\(985\) −24.2104 + 0.195743i −0.771408 + 0.00623690i
\(986\) 7.41895i 0.236267i
\(987\) 4.12008 19.2113i 0.131144 0.611502i
\(988\) 7.07955 + 7.07955i 0.225230 + 0.225230i
\(989\) 14.5546 25.2092i 0.462808 0.801607i
\(990\) 1.57120 + 0.162961i 0.0499362 + 0.00517923i
\(991\) −5.02003 8.69495i −0.159467 0.276204i 0.775210 0.631704i \(-0.217644\pi\)
−0.934676 + 0.355499i \(0.884311\pi\)
\(992\) −19.8885 + 5.32910i −0.631459 + 0.169199i
\(993\) 10.5431 2.20405i 0.334576 0.0699434i
\(994\) −8.19927 + 5.97636i −0.260065 + 0.189559i
\(995\) 9.19337 35.4542i 0.291449 1.12397i
\(996\) 21.0425 10.6329i 0.666757 0.336916i
\(997\) 13.5955 + 3.64290i 0.430574 + 0.115372i 0.467596 0.883943i \(-0.345120\pi\)
−0.0370216 + 0.999314i \(0.511787\pi\)
\(998\) −0.965142 0.258609i −0.0305510 0.00818612i
\(999\) 14.1633 + 11.7073i 0.448107 + 0.370402i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.2.x.a.23.6 yes 48
3.2 odd 2 inner 105.2.x.a.23.7 yes 48
5.2 odd 4 inner 105.2.x.a.2.6 48
5.3 odd 4 525.2.bf.f.107.7 48
5.4 even 2 525.2.bf.f.443.7 48
7.2 even 3 735.2.j.g.638.7 24
7.3 odd 6 735.2.y.i.263.7 48
7.4 even 3 inner 105.2.x.a.53.7 yes 48
7.5 odd 6 735.2.j.e.638.7 24
7.6 odd 2 735.2.y.i.128.6 48
15.2 even 4 inner 105.2.x.a.2.7 yes 48
15.8 even 4 525.2.bf.f.107.6 48
15.14 odd 2 525.2.bf.f.443.6 48
21.2 odd 6 735.2.j.g.638.6 24
21.5 even 6 735.2.j.e.638.6 24
21.11 odd 6 inner 105.2.x.a.53.6 yes 48
21.17 even 6 735.2.y.i.263.6 48
21.20 even 2 735.2.y.i.128.7 48
35.2 odd 12 735.2.j.g.197.6 24
35.4 even 6 525.2.bf.f.368.6 48
35.12 even 12 735.2.j.e.197.6 24
35.17 even 12 735.2.y.i.557.7 48
35.18 odd 12 525.2.bf.f.32.6 48
35.27 even 4 735.2.y.i.422.6 48
35.32 odd 12 inner 105.2.x.a.32.7 yes 48
105.2 even 12 735.2.j.g.197.7 24
105.17 odd 12 735.2.y.i.557.6 48
105.32 even 12 inner 105.2.x.a.32.6 yes 48
105.47 odd 12 735.2.j.e.197.7 24
105.53 even 12 525.2.bf.f.32.7 48
105.62 odd 4 735.2.y.i.422.7 48
105.74 odd 6 525.2.bf.f.368.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.x.a.2.6 48 5.2 odd 4 inner
105.2.x.a.2.7 yes 48 15.2 even 4 inner
105.2.x.a.23.6 yes 48 1.1 even 1 trivial
105.2.x.a.23.7 yes 48 3.2 odd 2 inner
105.2.x.a.32.6 yes 48 105.32 even 12 inner
105.2.x.a.32.7 yes 48 35.32 odd 12 inner
105.2.x.a.53.6 yes 48 21.11 odd 6 inner
105.2.x.a.53.7 yes 48 7.4 even 3 inner
525.2.bf.f.32.6 48 35.18 odd 12
525.2.bf.f.32.7 48 105.53 even 12
525.2.bf.f.107.6 48 15.8 even 4
525.2.bf.f.107.7 48 5.3 odd 4
525.2.bf.f.368.6 48 35.4 even 6
525.2.bf.f.368.7 48 105.74 odd 6
525.2.bf.f.443.6 48 15.14 odd 2
525.2.bf.f.443.7 48 5.4 even 2
735.2.j.e.197.6 24 35.12 even 12
735.2.j.e.197.7 24 105.47 odd 12
735.2.j.e.638.6 24 21.5 even 6
735.2.j.e.638.7 24 7.5 odd 6
735.2.j.g.197.6 24 35.2 odd 12
735.2.j.g.197.7 24 105.2 even 12
735.2.j.g.638.6 24 21.2 odd 6
735.2.j.g.638.7 24 7.2 even 3
735.2.y.i.128.6 48 7.6 odd 2
735.2.y.i.128.7 48 21.20 even 2
735.2.y.i.263.6 48 21.17 even 6
735.2.y.i.263.7 48 7.3 odd 6
735.2.y.i.422.6 48 35.27 even 4
735.2.y.i.422.7 48 105.62 odd 4
735.2.y.i.557.6 48 105.17 odd 12
735.2.y.i.557.7 48 35.17 even 12