Properties

Label 1083.4.a.e
Level $1083$
Weight $4$
Character orbit 1083.a
Self dual yes
Analytic conductor $63.899$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1083,4,Mod(1,1083)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1083, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1083.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1083 = 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1083.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8990685362\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.5682368.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 25x^{2} + 24x + 54 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + 3 q^{3} + (\beta_{2} + \beta_1 + 5) q^{4} + ( - \beta_{3} + 4) q^{5} - 3 \beta_1 q^{6} + ( - \beta_{2} + 3 \beta_1 - 4) q^{7} + ( - 3 \beta_{3} - 2 \beta_{2} + \cdots - 11) q^{8} + 9 q^{9}+ \cdots + (36 \beta_{3} + 9 \beta_{2} + \cdots - 54) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 12 q^{3} + 22 q^{4} + 18 q^{5} - 6 q^{6} - 10 q^{7} - 54 q^{8} + 36 q^{9} - 32 q^{10} - 14 q^{11} + 66 q^{12} - 56 q^{13} - 148 q^{14} + 54 q^{15} + 218 q^{16} - 186 q^{17} - 18 q^{18} + 184 q^{20}+ \cdots - 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 25x^{2} + 24x + 54 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 2\nu^{2} - 22\nu + 15 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} + 2\beta_{2} + 24\beta _1 + 11 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.44674
2.02925
−1.12214
−4.35385
−5.44674 3.00000 21.6670 4.85799 −16.3402 1.11999 −74.4404 9.00000 −26.4602
1.2 −2.02925 3.00000 −3.88214 13.8410 −6.08775 12.9991 24.1118 9.00000 −28.0869
1.3 1.12214 3.00000 −6.74079 −7.91858 3.36643 3.25222 −16.5413 9.00000 −8.88579
1.4 4.35385 3.00000 10.9560 7.21957 13.0615 −27.3714 12.8698 9.00000 31.4329
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1083.4.a.e 4
19.b odd 2 1 1083.4.a.f yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1083.4.a.e 4 1.a even 1 1 trivial
1083.4.a.f yes 4 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 2T_{2}^{3} - 25T_{2}^{2} - 24T_{2} + 54 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1083))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots + 54 \) Copy content Toggle raw display
$3$ \( (T - 3)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 18 T^{3} + \cdots - 3844 \) Copy content Toggle raw display
$7$ \( T^{4} + 10 T^{3} + \cdots - 1296 \) Copy content Toggle raw display
$11$ \( T^{4} + 14 T^{3} + \cdots + 1932772 \) Copy content Toggle raw display
$13$ \( T^{4} + 56 T^{3} + \cdots - 680832 \) Copy content Toggle raw display
$17$ \( T^{4} + 186 T^{3} + \cdots - 10461628 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 84 T^{3} + \cdots - 39777856 \) Copy content Toggle raw display
$29$ \( T^{4} - 236 T^{3} + \cdots - 278100864 \) Copy content Toggle raw display
$31$ \( T^{4} + 112 T^{3} + \cdots + 71134848 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 1590786432 \) Copy content Toggle raw display
$41$ \( T^{4} - 68 T^{3} + \cdots + 320141376 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 4236980976 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 4230704988 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 22410191808 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 10491192576 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 50644624356 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 34923875328 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 17183522304 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 13882720932 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 55240890624 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 112165657344 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 25504082496 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 239463482112 \) Copy content Toggle raw display
show more
show less