Properties

Label 110.6.a.e.1.1
Level $110$
Weight $6$
Character 110.1
Self dual yes
Analytic conductor $17.642$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,6,Mod(1,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 110.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.6422201794\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{889}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 222 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(15.4081\) of defining polynomial
Character \(\chi\) \(=\) 110.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -4.40805 q^{3} +16.0000 q^{4} -25.0000 q^{5} +17.6322 q^{6} +92.0403 q^{7} -64.0000 q^{8} -223.569 q^{9} +100.000 q^{10} +121.000 q^{11} -70.5288 q^{12} -64.2415 q^{13} -368.161 q^{14} +110.201 q^{15} +256.000 q^{16} -1394.03 q^{17} +894.276 q^{18} +813.224 q^{19} -400.000 q^{20} -405.718 q^{21} -484.000 q^{22} +2668.06 q^{23} +282.115 q^{24} +625.000 q^{25} +256.966 q^{26} +2056.66 q^{27} +1472.64 q^{28} +1880.55 q^{29} -440.805 q^{30} +3679.50 q^{31} -1024.00 q^{32} -533.374 q^{33} +5576.12 q^{34} -2301.01 q^{35} -3577.11 q^{36} +15375.8 q^{37} -3252.90 q^{38} +283.180 q^{39} +1600.00 q^{40} +2875.24 q^{41} +1622.87 q^{42} +20405.3 q^{43} +1936.00 q^{44} +5589.23 q^{45} -10672.2 q^{46} +26141.6 q^{47} -1128.46 q^{48} -8335.59 q^{49} -2500.00 q^{50} +6144.95 q^{51} -1027.86 q^{52} +491.587 q^{53} -8226.64 q^{54} -3025.00 q^{55} -5890.58 q^{56} -3584.73 q^{57} -7522.18 q^{58} -30775.7 q^{59} +1763.22 q^{60} -12688.8 q^{61} -14718.0 q^{62} -20577.4 q^{63} +4096.00 q^{64} +1606.04 q^{65} +2133.50 q^{66} +3915.60 q^{67} -22304.5 q^{68} -11760.9 q^{69} +9204.03 q^{70} -23656.8 q^{71} +14308.4 q^{72} +49810.0 q^{73} -61503.2 q^{74} -2755.03 q^{75} +13011.6 q^{76} +11136.9 q^{77} -1132.72 q^{78} +5846.55 q^{79} -6400.00 q^{80} +45261.4 q^{81} -11501.0 q^{82} -29846.2 q^{83} -6491.49 q^{84} +34850.7 q^{85} -81621.4 q^{86} -8289.54 q^{87} -7744.00 q^{88} -110688. q^{89} -22356.9 q^{90} -5912.81 q^{91} +42688.9 q^{92} -16219.4 q^{93} -104566. q^{94} -20330.6 q^{95} +4513.84 q^{96} -65866.2 q^{97} +33342.4 q^{98} -27051.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 21 q^{3} + 32 q^{4} - 50 q^{5} - 84 q^{6} + 35 q^{7} - 128 q^{8} + 179 q^{9} + 200 q^{10} + 242 q^{11} + 336 q^{12} + 766 q^{13} - 140 q^{14} - 525 q^{15} + 512 q^{16} + 283 q^{17} - 716 q^{18}+ \cdots + 21659 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −4.40805 −0.282777 −0.141388 0.989954i \(-0.545157\pi\)
−0.141388 + 0.989954i \(0.545157\pi\)
\(4\) 16.0000 0.500000
\(5\) −25.0000 −0.447214
\(6\) 17.6322 0.199953
\(7\) 92.0403 0.709958 0.354979 0.934874i \(-0.384488\pi\)
0.354979 + 0.934874i \(0.384488\pi\)
\(8\) −64.0000 −0.353553
\(9\) −223.569 −0.920037
\(10\) 100.000 0.316228
\(11\) 121.000 0.301511
\(12\) −70.5288 −0.141388
\(13\) −64.2415 −0.105428 −0.0527142 0.998610i \(-0.516787\pi\)
−0.0527142 + 0.998610i \(0.516787\pi\)
\(14\) −368.161 −0.502016
\(15\) 110.201 0.126462
\(16\) 256.000 0.250000
\(17\) −1394.03 −1.16990 −0.584951 0.811069i \(-0.698886\pi\)
−0.584951 + 0.811069i \(0.698886\pi\)
\(18\) 894.276 0.650565
\(19\) 813.224 0.516804 0.258402 0.966037i \(-0.416804\pi\)
0.258402 + 0.966037i \(0.416804\pi\)
\(20\) −400.000 −0.223607
\(21\) −405.718 −0.200760
\(22\) −484.000 −0.213201
\(23\) 2668.06 1.05166 0.525831 0.850589i \(-0.323755\pi\)
0.525831 + 0.850589i \(0.323755\pi\)
\(24\) 282.115 0.0999766
\(25\) 625.000 0.200000
\(26\) 256.966 0.0745491
\(27\) 2056.66 0.542942
\(28\) 1472.64 0.354979
\(29\) 1880.55 0.415230 0.207615 0.978211i \(-0.433430\pi\)
0.207615 + 0.978211i \(0.433430\pi\)
\(30\) −440.805 −0.0894218
\(31\) 3679.50 0.687677 0.343839 0.939029i \(-0.388273\pi\)
0.343839 + 0.939029i \(0.388273\pi\)
\(32\) −1024.00 −0.176777
\(33\) −533.374 −0.0852604
\(34\) 5576.12 0.827246
\(35\) −2301.01 −0.317503
\(36\) −3577.11 −0.460019
\(37\) 15375.8 1.84643 0.923215 0.384283i \(-0.125551\pi\)
0.923215 + 0.384283i \(0.125551\pi\)
\(38\) −3252.90 −0.365436
\(39\) 283.180 0.0298127
\(40\) 1600.00 0.158114
\(41\) 2875.24 0.267125 0.133563 0.991040i \(-0.457358\pi\)
0.133563 + 0.991040i \(0.457358\pi\)
\(42\) 1622.87 0.141958
\(43\) 20405.3 1.68296 0.841478 0.540291i \(-0.181686\pi\)
0.841478 + 0.540291i \(0.181686\pi\)
\(44\) 1936.00 0.150756
\(45\) 5589.23 0.411453
\(46\) −10672.2 −0.743637
\(47\) 26141.6 1.72619 0.863093 0.505045i \(-0.168524\pi\)
0.863093 + 0.505045i \(0.168524\pi\)
\(48\) −1128.46 −0.0706942
\(49\) −8335.59 −0.495959
\(50\) −2500.00 −0.141421
\(51\) 6144.95 0.330821
\(52\) −1027.86 −0.0527142
\(53\) 491.587 0.0240387 0.0120193 0.999928i \(-0.496174\pi\)
0.0120193 + 0.999928i \(0.496174\pi\)
\(54\) −8226.64 −0.383918
\(55\) −3025.00 −0.134840
\(56\) −5890.58 −0.251008
\(57\) −3584.73 −0.146140
\(58\) −7522.18 −0.293612
\(59\) −30775.7 −1.15101 −0.575504 0.817799i \(-0.695194\pi\)
−0.575504 + 0.817799i \(0.695194\pi\)
\(60\) 1763.22 0.0632308
\(61\) −12688.8 −0.436613 −0.218307 0.975880i \(-0.570053\pi\)
−0.218307 + 0.975880i \(0.570053\pi\)
\(62\) −14718.0 −0.486261
\(63\) −20577.4 −0.653188
\(64\) 4096.00 0.125000
\(65\) 1606.04 0.0471490
\(66\) 2133.50 0.0602882
\(67\) 3915.60 0.106564 0.0532822 0.998579i \(-0.483032\pi\)
0.0532822 + 0.998579i \(0.483032\pi\)
\(68\) −22304.5 −0.584951
\(69\) −11760.9 −0.297385
\(70\) 9204.03 0.224508
\(71\) −23656.8 −0.556942 −0.278471 0.960445i \(-0.589828\pi\)
−0.278471 + 0.960445i \(0.589828\pi\)
\(72\) 14308.4 0.325282
\(73\) 49810.0 1.09398 0.546990 0.837139i \(-0.315774\pi\)
0.546990 + 0.837139i \(0.315774\pi\)
\(74\) −61503.2 −1.30562
\(75\) −2755.03 −0.0565553
\(76\) 13011.6 0.258402
\(77\) 11136.9 0.214060
\(78\) −1132.72 −0.0210808
\(79\) 5846.55 0.105398 0.0526990 0.998610i \(-0.483218\pi\)
0.0526990 + 0.998610i \(0.483218\pi\)
\(80\) −6400.00 −0.111803
\(81\) 45261.4 0.766506
\(82\) −11501.0 −0.188886
\(83\) −29846.2 −0.475547 −0.237774 0.971321i \(-0.576418\pi\)
−0.237774 + 0.971321i \(0.576418\pi\)
\(84\) −6491.49 −0.100380
\(85\) 34850.7 0.523196
\(86\) −81621.4 −1.19003
\(87\) −8289.54 −0.117417
\(88\) −7744.00 −0.106600
\(89\) −110688. −1.48124 −0.740621 0.671923i \(-0.765469\pi\)
−0.740621 + 0.671923i \(0.765469\pi\)
\(90\) −22356.9 −0.290941
\(91\) −5912.81 −0.0748497
\(92\) 42688.9 0.525831
\(93\) −16219.4 −0.194459
\(94\) −104566. −1.22060
\(95\) −20330.6 −0.231122
\(96\) 4513.84 0.0499883
\(97\) −65866.2 −0.710777 −0.355389 0.934719i \(-0.615651\pi\)
−0.355389 + 0.934719i \(0.615651\pi\)
\(98\) 33342.4 0.350696
\(99\) −27051.9 −0.277402
\(100\) 10000.0 0.100000
\(101\) 170816. 1.66619 0.833097 0.553127i \(-0.186565\pi\)
0.833097 + 0.553127i \(0.186565\pi\)
\(102\) −24579.8 −0.233926
\(103\) −3350.44 −0.0311178 −0.0155589 0.999879i \(-0.504953\pi\)
−0.0155589 + 0.999879i \(0.504953\pi\)
\(104\) 4111.46 0.0372746
\(105\) 10143.0 0.0897824
\(106\) −1966.35 −0.0169979
\(107\) −43688.4 −0.368898 −0.184449 0.982842i \(-0.559050\pi\)
−0.184449 + 0.982842i \(0.559050\pi\)
\(108\) 32906.6 0.271471
\(109\) 49375.4 0.398056 0.199028 0.979994i \(-0.436222\pi\)
0.199028 + 0.979994i \(0.436222\pi\)
\(110\) 12100.0 0.0953463
\(111\) −67777.3 −0.522128
\(112\) 23562.3 0.177490
\(113\) 113388. 0.835356 0.417678 0.908595i \(-0.362844\pi\)
0.417678 + 0.908595i \(0.362844\pi\)
\(114\) 14338.9 0.103337
\(115\) −66701.5 −0.470317
\(116\) 30088.7 0.207615
\(117\) 14362.4 0.0969981
\(118\) 123103. 0.813886
\(119\) −128307. −0.830582
\(120\) −7052.88 −0.0447109
\(121\) 14641.0 0.0909091
\(122\) 50755.3 0.308732
\(123\) −12674.2 −0.0755367
\(124\) 58872.0 0.343839
\(125\) −15625.0 −0.0894427
\(126\) 82309.4 0.461874
\(127\) 315137. 1.73377 0.866883 0.498512i \(-0.166120\pi\)
0.866883 + 0.498512i \(0.166120\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −89947.8 −0.475901
\(130\) −6424.15 −0.0333394
\(131\) 263284. 1.34044 0.670218 0.742165i \(-0.266201\pi\)
0.670218 + 0.742165i \(0.266201\pi\)
\(132\) −8533.99 −0.0426302
\(133\) 74849.4 0.366910
\(134\) −15662.4 −0.0753524
\(135\) −51416.5 −0.242811
\(136\) 89217.9 0.413623
\(137\) 101284. 0.461039 0.230519 0.973068i \(-0.425957\pi\)
0.230519 + 0.973068i \(0.425957\pi\)
\(138\) 47043.8 0.210283
\(139\) −156014. −0.684897 −0.342449 0.939537i \(-0.611256\pi\)
−0.342449 + 0.939537i \(0.611256\pi\)
\(140\) −36816.1 −0.158751
\(141\) −115234. −0.488125
\(142\) 94627.2 0.393818
\(143\) −7773.23 −0.0317879
\(144\) −57233.7 −0.230009
\(145\) −47013.6 −0.185697
\(146\) −199240. −0.773560
\(147\) 36743.7 0.140246
\(148\) 246013. 0.923215
\(149\) −132795. −0.490024 −0.245012 0.969520i \(-0.578792\pi\)
−0.245012 + 0.969520i \(0.578792\pi\)
\(150\) 11020.1 0.0399907
\(151\) 224845. 0.802491 0.401245 0.915971i \(-0.368577\pi\)
0.401245 + 0.915971i \(0.368577\pi\)
\(152\) −52046.3 −0.182718
\(153\) 311662. 1.07635
\(154\) −44547.5 −0.151364
\(155\) −91987.5 −0.307539
\(156\) 4530.88 0.0149063
\(157\) 200959. 0.650667 0.325333 0.945599i \(-0.394524\pi\)
0.325333 + 0.945599i \(0.394524\pi\)
\(158\) −23386.2 −0.0745276
\(159\) −2166.94 −0.00679758
\(160\) 25600.0 0.0790569
\(161\) 245569. 0.746635
\(162\) −181046. −0.542002
\(163\) −315221. −0.929278 −0.464639 0.885500i \(-0.653816\pi\)
−0.464639 + 0.885500i \(0.653816\pi\)
\(164\) 46003.8 0.133563
\(165\) 13334.4 0.0381296
\(166\) 119385. 0.336263
\(167\) −461946. −1.28174 −0.640870 0.767650i \(-0.721426\pi\)
−0.640870 + 0.767650i \(0.721426\pi\)
\(168\) 25966.0 0.0709792
\(169\) −367166. −0.988885
\(170\) −139403. −0.369956
\(171\) −181812. −0.475479
\(172\) 326486. 0.841478
\(173\) −284609. −0.722992 −0.361496 0.932374i \(-0.617734\pi\)
−0.361496 + 0.932374i \(0.617734\pi\)
\(174\) 33158.2 0.0830266
\(175\) 57525.2 0.141992
\(176\) 30976.0 0.0753778
\(177\) 135661. 0.325478
\(178\) 442753. 1.04740
\(179\) −616210. −1.43746 −0.718731 0.695289i \(-0.755277\pi\)
−0.718731 + 0.695289i \(0.755277\pi\)
\(180\) 89427.6 0.205727
\(181\) 156628. 0.355364 0.177682 0.984088i \(-0.443140\pi\)
0.177682 + 0.984088i \(0.443140\pi\)
\(182\) 23651.2 0.0529268
\(183\) 55933.0 0.123464
\(184\) −170756. −0.371818
\(185\) −384395. −0.825749
\(186\) 64877.7 0.137503
\(187\) −168678. −0.352739
\(188\) 418266. 0.863093
\(189\) 189296. 0.385466
\(190\) 81322.4 0.163428
\(191\) 95586.9 0.189590 0.0947949 0.995497i \(-0.469780\pi\)
0.0947949 + 0.995497i \(0.469780\pi\)
\(192\) −18055.4 −0.0353471
\(193\) 748658. 1.44674 0.723370 0.690461i \(-0.242592\pi\)
0.723370 + 0.690461i \(0.242592\pi\)
\(194\) 263465. 0.502595
\(195\) −7079.50 −0.0133326
\(196\) −133369. −0.247980
\(197\) −456491. −0.838043 −0.419022 0.907976i \(-0.637627\pi\)
−0.419022 + 0.907976i \(0.637627\pi\)
\(198\) 108207. 0.196153
\(199\) 591303. 1.05847 0.529234 0.848476i \(-0.322479\pi\)
0.529234 + 0.848476i \(0.322479\pi\)
\(200\) −40000.0 −0.0707107
\(201\) −17260.2 −0.0301339
\(202\) −683265. −1.17818
\(203\) 173086. 0.294796
\(204\) 98319.2 0.165411
\(205\) −71881.0 −0.119462
\(206\) 13401.7 0.0220036
\(207\) −596495. −0.967567
\(208\) −16445.8 −0.0263571
\(209\) 98400.1 0.155822
\(210\) −40571.8 −0.0634857
\(211\) −568294. −0.878754 −0.439377 0.898303i \(-0.644801\pi\)
−0.439377 + 0.898303i \(0.644801\pi\)
\(212\) 7865.39 0.0120193
\(213\) 104280. 0.157490
\(214\) 174754. 0.260850
\(215\) −510134. −0.752641
\(216\) −131626. −0.191959
\(217\) 338662. 0.488222
\(218\) −197501. −0.281468
\(219\) −219565. −0.309352
\(220\) −48400.0 −0.0674200
\(221\) 89554.6 0.123341
\(222\) 271109. 0.369200
\(223\) 355316. 0.478468 0.239234 0.970962i \(-0.423104\pi\)
0.239234 + 0.970962i \(0.423104\pi\)
\(224\) −94249.2 −0.125504
\(225\) −139731. −0.184007
\(226\) −453553. −0.590686
\(227\) 627531. 0.808297 0.404148 0.914693i \(-0.367568\pi\)
0.404148 + 0.914693i \(0.367568\pi\)
\(228\) −57355.7 −0.0730701
\(229\) −987980. −1.24497 −0.622486 0.782631i \(-0.713877\pi\)
−0.622486 + 0.782631i \(0.713877\pi\)
\(230\) 266806. 0.332564
\(231\) −49091.9 −0.0605313
\(232\) −120355. −0.146806
\(233\) −147032. −0.177428 −0.0887139 0.996057i \(-0.528276\pi\)
−0.0887139 + 0.996057i \(0.528276\pi\)
\(234\) −57449.7 −0.0685880
\(235\) −653540. −0.771974
\(236\) −492412. −0.575504
\(237\) −25771.9 −0.0298041
\(238\) 513227. 0.587310
\(239\) −1.36202e6 −1.54237 −0.771186 0.636610i \(-0.780336\pi\)
−0.771186 + 0.636610i \(0.780336\pi\)
\(240\) 28211.5 0.0316154
\(241\) 1.54270e6 1.71096 0.855478 0.517839i \(-0.173263\pi\)
0.855478 + 0.517839i \(0.173263\pi\)
\(242\) −58564.0 −0.0642824
\(243\) −699283. −0.759692
\(244\) −203021. −0.218307
\(245\) 208390. 0.221800
\(246\) 50696.8 0.0534125
\(247\) −52242.8 −0.0544859
\(248\) −235488. −0.243131
\(249\) 131564. 0.134474
\(250\) 62500.0 0.0632456
\(251\) −551214. −0.552250 −0.276125 0.961122i \(-0.589050\pi\)
−0.276125 + 0.961122i \(0.589050\pi\)
\(252\) −329238. −0.326594
\(253\) 322835. 0.317088
\(254\) −1.26055e6 −1.22596
\(255\) −153624. −0.147948
\(256\) 65536.0 0.0625000
\(257\) −1.50798e6 −1.42417 −0.712085 0.702094i \(-0.752249\pi\)
−0.712085 + 0.702094i \(0.752249\pi\)
\(258\) 359791. 0.336513
\(259\) 1.41519e6 1.31089
\(260\) 25696.6 0.0235745
\(261\) −420432. −0.382027
\(262\) −1.05313e6 −0.947831
\(263\) 413554. 0.368675 0.184337 0.982863i \(-0.440986\pi\)
0.184337 + 0.982863i \(0.440986\pi\)
\(264\) 34136.0 0.0301441
\(265\) −12289.7 −0.0107504
\(266\) −299397. −0.259444
\(267\) 487919. 0.418861
\(268\) 62649.7 0.0532822
\(269\) 1.92394e6 1.62110 0.810551 0.585668i \(-0.199168\pi\)
0.810551 + 0.585668i \(0.199168\pi\)
\(270\) 205666. 0.171693
\(271\) 1.36505e6 1.12908 0.564540 0.825405i \(-0.309053\pi\)
0.564540 + 0.825405i \(0.309053\pi\)
\(272\) −356872. −0.292476
\(273\) 26064.0 0.0211658
\(274\) −405134. −0.326004
\(275\) 75625.0 0.0603023
\(276\) −188175. −0.148693
\(277\) 462704. 0.362330 0.181165 0.983453i \(-0.442013\pi\)
0.181165 + 0.983453i \(0.442013\pi\)
\(278\) 624055. 0.484296
\(279\) −822623. −0.632689
\(280\) 147264. 0.112254
\(281\) 1.31617e6 0.994367 0.497183 0.867645i \(-0.334368\pi\)
0.497183 + 0.867645i \(0.334368\pi\)
\(282\) 460934. 0.345157
\(283\) −1.19241e6 −0.885035 −0.442517 0.896760i \(-0.645914\pi\)
−0.442517 + 0.896760i \(0.645914\pi\)
\(284\) −378509. −0.278471
\(285\) 89618.3 0.0653559
\(286\) 31092.9 0.0224774
\(287\) 264638. 0.189648
\(288\) 228935. 0.162641
\(289\) 523461. 0.368671
\(290\) 188055. 0.131307
\(291\) 290342. 0.200991
\(292\) 796960. 0.546990
\(293\) −644118. −0.438325 −0.219163 0.975688i \(-0.570332\pi\)
−0.219163 + 0.975688i \(0.570332\pi\)
\(294\) −146975. −0.0991687
\(295\) 769394. 0.514747
\(296\) −984050. −0.652812
\(297\) 248856. 0.163703
\(298\) 531181. 0.346499
\(299\) −171400. −0.110875
\(300\) −44080.5 −0.0282777
\(301\) 1.87811e6 1.19483
\(302\) −899379. −0.567447
\(303\) −752967. −0.471161
\(304\) 208185. 0.129201
\(305\) 317221. 0.195259
\(306\) −1.24665e6 −0.761097
\(307\) 1.19044e6 0.720875 0.360437 0.932783i \(-0.382627\pi\)
0.360437 + 0.932783i \(0.382627\pi\)
\(308\) 178190. 0.107030
\(309\) 14768.9 0.00879938
\(310\) 367950. 0.217463
\(311\) 1.25938e6 0.738341 0.369170 0.929362i \(-0.379642\pi\)
0.369170 + 0.929362i \(0.379642\pi\)
\(312\) −18123.5 −0.0105404
\(313\) 2.23658e6 1.29040 0.645200 0.764014i \(-0.276774\pi\)
0.645200 + 0.764014i \(0.276774\pi\)
\(314\) −803836. −0.460091
\(315\) 514434. 0.292115
\(316\) 93544.8 0.0526990
\(317\) 2.36125e6 1.31976 0.659878 0.751373i \(-0.270608\pi\)
0.659878 + 0.751373i \(0.270608\pi\)
\(318\) 8667.76 0.00480661
\(319\) 227546. 0.125197
\(320\) −102400. −0.0559017
\(321\) 192581. 0.104316
\(322\) −982275. −0.527951
\(323\) −1.13366e6 −0.604611
\(324\) 724183. 0.383253
\(325\) −40151.0 −0.0210857
\(326\) 1.26088e6 0.657099
\(327\) −217649. −0.112561
\(328\) −184015. −0.0944430
\(329\) 2.40608e6 1.22552
\(330\) −53337.4 −0.0269617
\(331\) −3.06002e6 −1.53516 −0.767580 0.640953i \(-0.778539\pi\)
−0.767580 + 0.640953i \(0.778539\pi\)
\(332\) −477539. −0.237774
\(333\) −3.43755e6 −1.69879
\(334\) 1.84778e6 0.906327
\(335\) −97890.1 −0.0476570
\(336\) −103864. −0.0501899
\(337\) 4.08324e6 1.95853 0.979264 0.202588i \(-0.0649351\pi\)
0.979264 + 0.202588i \(0.0649351\pi\)
\(338\) 1.46866e6 0.699247
\(339\) −499821. −0.236219
\(340\) 557612. 0.261598
\(341\) 445220. 0.207342
\(342\) 727247. 0.336215
\(343\) −2.31413e6 −1.06207
\(344\) −1.30594e6 −0.595015
\(345\) 294023. 0.132995
\(346\) 1.13844e6 0.511232
\(347\) 2.25118e6 1.00366 0.501830 0.864966i \(-0.332660\pi\)
0.501830 + 0.864966i \(0.332660\pi\)
\(348\) −132633. −0.0587087
\(349\) 1.09341e6 0.480531 0.240265 0.970707i \(-0.422766\pi\)
0.240265 + 0.970707i \(0.422766\pi\)
\(350\) −230101. −0.100403
\(351\) −132123. −0.0572415
\(352\) −123904. −0.0533002
\(353\) −1.73879e6 −0.742694 −0.371347 0.928494i \(-0.621104\pi\)
−0.371347 + 0.928494i \(0.621104\pi\)
\(354\) −542644. −0.230148
\(355\) 591420. 0.249072
\(356\) −1.77101e6 −0.740621
\(357\) 565583. 0.234869
\(358\) 2.46484e6 1.01644
\(359\) 1.93636e6 0.792959 0.396480 0.918044i \(-0.370232\pi\)
0.396480 + 0.918044i \(0.370232\pi\)
\(360\) −357711. −0.145471
\(361\) −1.81477e6 −0.732913
\(362\) −626513. −0.251280
\(363\) −64538.3 −0.0257070
\(364\) −94604.9 −0.0374249
\(365\) −1.24525e6 −0.489243
\(366\) −223732. −0.0873022
\(367\) −1.36996e6 −0.530937 −0.265469 0.964119i \(-0.585527\pi\)
−0.265469 + 0.964119i \(0.585527\pi\)
\(368\) 683023. 0.262915
\(369\) −642815. −0.245765
\(370\) 1.53758e6 0.583893
\(371\) 45245.8 0.0170665
\(372\) −259511. −0.0972295
\(373\) 1.02270e6 0.380608 0.190304 0.981725i \(-0.439053\pi\)
0.190304 + 0.981725i \(0.439053\pi\)
\(374\) 674710. 0.249424
\(375\) 68875.8 0.0252923
\(376\) −1.67306e6 −0.610299
\(377\) −120809. −0.0437770
\(378\) −757182. −0.272566
\(379\) 2.30604e6 0.824650 0.412325 0.911037i \(-0.364717\pi\)
0.412325 + 0.911037i \(0.364717\pi\)
\(380\) −325290. −0.115561
\(381\) −1.38914e6 −0.490269
\(382\) −382348. −0.134060
\(383\) −4.44660e6 −1.54893 −0.774464 0.632618i \(-0.781980\pi\)
−0.774464 + 0.632618i \(0.781980\pi\)
\(384\) 72221.5 0.0249942
\(385\) −278422. −0.0957307
\(386\) −2.99463e6 −1.02300
\(387\) −4.56201e6 −1.54838
\(388\) −1.05386e6 −0.355389
\(389\) −3.04391e6 −1.01990 −0.509951 0.860204i \(-0.670336\pi\)
−0.509951 + 0.860204i \(0.670336\pi\)
\(390\) 28318.0 0.00942760
\(391\) −3.71935e6 −1.23034
\(392\) 533478. 0.175348
\(393\) −1.16057e6 −0.379044
\(394\) 1.82596e6 0.592586
\(395\) −146164. −0.0471354
\(396\) −432830. −0.138701
\(397\) −2.97167e6 −0.946289 −0.473145 0.880985i \(-0.656881\pi\)
−0.473145 + 0.880985i \(0.656881\pi\)
\(398\) −2.36521e6 −0.748450
\(399\) −329940. −0.103753
\(400\) 160000. 0.0500000
\(401\) 4.34955e6 1.35078 0.675388 0.737463i \(-0.263976\pi\)
0.675388 + 0.737463i \(0.263976\pi\)
\(402\) 69040.7 0.0213079
\(403\) −236377. −0.0725007
\(404\) 2.73306e6 0.833097
\(405\) −1.13154e6 −0.342792
\(406\) −692343. −0.208452
\(407\) 1.86047e6 0.556720
\(408\) −393277. −0.116963
\(409\) 89191.8 0.0263643 0.0131822 0.999913i \(-0.495804\pi\)
0.0131822 + 0.999913i \(0.495804\pi\)
\(410\) 287524. 0.0844723
\(411\) −446463. −0.130371
\(412\) −53607.0 −0.0155589
\(413\) −2.83261e6 −0.817168
\(414\) 2.38598e6 0.684173
\(415\) 746155. 0.212671
\(416\) 65783.3 0.0186373
\(417\) 687716. 0.193673
\(418\) −393600. −0.110183
\(419\) −4.18567e6 −1.16474 −0.582371 0.812923i \(-0.697875\pi\)
−0.582371 + 0.812923i \(0.697875\pi\)
\(420\) 162287. 0.0448912
\(421\) 1.96388e6 0.540020 0.270010 0.962857i \(-0.412973\pi\)
0.270010 + 0.962857i \(0.412973\pi\)
\(422\) 2.27318e6 0.621373
\(423\) −5.84445e6 −1.58816
\(424\) −31461.6 −0.00849895
\(425\) −871268. −0.233980
\(426\) −417122. −0.111362
\(427\) −1.16788e6 −0.309977
\(428\) −699014. −0.184449
\(429\) 34264.8 0.00898886
\(430\) 2.04053e6 0.532198
\(431\) −1.32562e6 −0.343736 −0.171868 0.985120i \(-0.554980\pi\)
−0.171868 + 0.985120i \(0.554980\pi\)
\(432\) 526505. 0.135735
\(433\) −5.16016e6 −1.32265 −0.661323 0.750101i \(-0.730005\pi\)
−0.661323 + 0.750101i \(0.730005\pi\)
\(434\) −1.35465e6 −0.345225
\(435\) 207239. 0.0525106
\(436\) 790006. 0.199028
\(437\) 2.16973e6 0.543503
\(438\) 878260. 0.218745
\(439\) 3.93148e6 0.973632 0.486816 0.873504i \(-0.338158\pi\)
0.486816 + 0.873504i \(0.338158\pi\)
\(440\) 193600. 0.0476731
\(441\) 1.86358e6 0.456301
\(442\) −358218. −0.0872152
\(443\) 3.06674e6 0.742452 0.371226 0.928543i \(-0.378938\pi\)
0.371226 + 0.928543i \(0.378938\pi\)
\(444\) −1.08444e6 −0.261064
\(445\) 2.76720e6 0.662432
\(446\) −1.42126e6 −0.338328
\(447\) 585369. 0.138567
\(448\) 376997. 0.0887448
\(449\) 4.68097e6 1.09577 0.547886 0.836553i \(-0.315433\pi\)
0.547886 + 0.836553i \(0.315433\pi\)
\(450\) 558923. 0.130113
\(451\) 347904. 0.0805412
\(452\) 1.81421e6 0.417678
\(453\) −991127. −0.226926
\(454\) −2.51013e6 −0.571552
\(455\) 147820. 0.0334738
\(456\) 229423. 0.0516684
\(457\) −6.86401e6 −1.53740 −0.768701 0.639608i \(-0.779097\pi\)
−0.768701 + 0.639608i \(0.779097\pi\)
\(458\) 3.95192e6 0.880328
\(459\) −2.86705e6 −0.635189
\(460\) −1.06722e6 −0.235159
\(461\) −3.85378e6 −0.844569 −0.422284 0.906463i \(-0.638772\pi\)
−0.422284 + 0.906463i \(0.638772\pi\)
\(462\) 196368. 0.0428021
\(463\) −3.15825e6 −0.684689 −0.342345 0.939574i \(-0.611221\pi\)
−0.342345 + 0.939574i \(0.611221\pi\)
\(464\) 481420. 0.103808
\(465\) 405486. 0.0869647
\(466\) 588127. 0.125460
\(467\) 196109. 0.0416107 0.0208054 0.999784i \(-0.493377\pi\)
0.0208054 + 0.999784i \(0.493377\pi\)
\(468\) 229799. 0.0484990
\(469\) 360393. 0.0756562
\(470\) 2.61416e6 0.545868
\(471\) −885838. −0.183993
\(472\) 1.96965e6 0.406943
\(473\) 2.46905e6 0.507430
\(474\) 103088. 0.0210747
\(475\) 508265. 0.103361
\(476\) −2.05291e6 −0.415291
\(477\) −109904. −0.0221165
\(478\) 5.44808e6 1.09062
\(479\) 5.13528e6 1.02265 0.511323 0.859389i \(-0.329156\pi\)
0.511323 + 0.859389i \(0.329156\pi\)
\(480\) −112846. −0.0223555
\(481\) −987764. −0.194666
\(482\) −6.17080e6 −1.20983
\(483\) −1.08248e6 −0.211131
\(484\) 234256. 0.0454545
\(485\) 1.64666e6 0.317869
\(486\) 2.79713e6 0.537183
\(487\) 2.43868e6 0.465943 0.232971 0.972484i \(-0.425155\pi\)
0.232971 + 0.972484i \(0.425155\pi\)
\(488\) 812085. 0.154366
\(489\) 1.38951e6 0.262778
\(490\) −833559. −0.156836
\(491\) 4.07687e6 0.763173 0.381587 0.924333i \(-0.375378\pi\)
0.381587 + 0.924333i \(0.375378\pi\)
\(492\) −202787. −0.0377684
\(493\) −2.62154e6 −0.485779
\(494\) 208971. 0.0385273
\(495\) 676296. 0.124058
\(496\) 941952. 0.171919
\(497\) −2.17738e6 −0.395406
\(498\) −526254. −0.0950873
\(499\) 878791. 0.157992 0.0789958 0.996875i \(-0.474829\pi\)
0.0789958 + 0.996875i \(0.474829\pi\)
\(500\) −250000. −0.0447214
\(501\) 2.03628e6 0.362446
\(502\) 2.20486e6 0.390500
\(503\) 7.00187e6 1.23394 0.616970 0.786987i \(-0.288360\pi\)
0.616970 + 0.786987i \(0.288360\pi\)
\(504\) 1.31695e6 0.230937
\(505\) −4.27040e6 −0.745145
\(506\) −1.29134e6 −0.224215
\(507\) 1.61849e6 0.279634
\(508\) 5.04220e6 0.866883
\(509\) 5.54203e6 0.948144 0.474072 0.880486i \(-0.342784\pi\)
0.474072 + 0.880486i \(0.342784\pi\)
\(510\) 614495. 0.104615
\(511\) 4.58452e6 0.776680
\(512\) −262144. −0.0441942
\(513\) 1.67253e6 0.280595
\(514\) 6.03190e6 1.00704
\(515\) 83760.9 0.0139163
\(516\) −1.43917e6 −0.237950
\(517\) 3.16313e6 0.520465
\(518\) −5.66077e6 −0.926938
\(519\) 1.25457e6 0.204445
\(520\) −102786. −0.0166697
\(521\) −5.22863e6 −0.843905 −0.421953 0.906618i \(-0.638655\pi\)
−0.421953 + 0.906618i \(0.638655\pi\)
\(522\) 1.68173e6 0.270134
\(523\) 2.80925e6 0.449092 0.224546 0.974463i \(-0.427910\pi\)
0.224546 + 0.974463i \(0.427910\pi\)
\(524\) 4.21254e6 0.670218
\(525\) −253574. −0.0401519
\(526\) −1.65422e6 −0.260692
\(527\) −5.12933e6 −0.804515
\(528\) −136544. −0.0213151
\(529\) 682194. 0.105991
\(530\) 49158.7 0.00760170
\(531\) 6.88050e6 1.05897
\(532\) 1.19759e6 0.183455
\(533\) −184710. −0.0281626
\(534\) −1.95168e6 −0.296179
\(535\) 1.09221e6 0.164976
\(536\) −250599. −0.0376762
\(537\) 2.71629e6 0.406480
\(538\) −7.69575e6 −1.14629
\(539\) −1.00861e6 −0.149537
\(540\) −822664. −0.121405
\(541\) −7.28856e6 −1.07065 −0.535326 0.844645i \(-0.679811\pi\)
−0.535326 + 0.844645i \(0.679811\pi\)
\(542\) −5.46020e6 −0.798381
\(543\) −690425. −0.100489
\(544\) 1.42749e6 0.206811
\(545\) −1.23438e6 −0.178016
\(546\) −104256. −0.0149665
\(547\) −9.33502e6 −1.33397 −0.666986 0.745070i \(-0.732416\pi\)
−0.666986 + 0.745070i \(0.732416\pi\)
\(548\) 1.62054e6 0.230519
\(549\) 2.83683e6 0.401700
\(550\) −302500. −0.0426401
\(551\) 1.52930e6 0.214593
\(552\) 752700. 0.105142
\(553\) 538118. 0.0748281
\(554\) −1.85082e6 −0.256206
\(555\) 1.69443e6 0.233503
\(556\) −2.49622e6 −0.342449
\(557\) −87187.2 −0.0119073 −0.00595367 0.999982i \(-0.501895\pi\)
−0.00595367 + 0.999982i \(0.501895\pi\)
\(558\) 3.29049e6 0.447378
\(559\) −1.31087e6 −0.177431
\(560\) −589058. −0.0793757
\(561\) 743539. 0.0997463
\(562\) −5.26468e6 −0.703123
\(563\) 1.99082e6 0.264705 0.132352 0.991203i \(-0.457747\pi\)
0.132352 + 0.991203i \(0.457747\pi\)
\(564\) −1.84374e6 −0.244063
\(565\) −2.83470e6 −0.373583
\(566\) 4.76965e6 0.625814
\(567\) 4.16587e6 0.544187
\(568\) 1.51404e6 0.196909
\(569\) 955969. 0.123784 0.0618918 0.998083i \(-0.480287\pi\)
0.0618918 + 0.998083i \(0.480287\pi\)
\(570\) −358473. −0.0462136
\(571\) 1.17829e7 1.51239 0.756193 0.654349i \(-0.227057\pi\)
0.756193 + 0.654349i \(0.227057\pi\)
\(572\) −124372. −0.0158939
\(573\) −421352. −0.0536116
\(574\) −1.05855e6 −0.134101
\(575\) 1.66754e6 0.210332
\(576\) −915739. −0.115005
\(577\) −7.62998e6 −0.954078 −0.477039 0.878882i \(-0.658290\pi\)
−0.477039 + 0.878882i \(0.658290\pi\)
\(578\) −2.09384e6 −0.260690
\(579\) −3.30013e6 −0.409104
\(580\) −752218. −0.0928483
\(581\) −2.74705e6 −0.337619
\(582\) −1.16137e6 −0.142122
\(583\) 59482.0 0.00724793
\(584\) −3.18784e6 −0.386780
\(585\) −359061. −0.0433789
\(586\) 2.57647e6 0.309943
\(587\) 5.31020e6 0.636086 0.318043 0.948076i \(-0.396974\pi\)
0.318043 + 0.948076i \(0.396974\pi\)
\(588\) 587899. 0.0701229
\(589\) 2.99226e6 0.355395
\(590\) −3.07757e6 −0.363981
\(591\) 2.01223e6 0.236979
\(592\) 3.93620e6 0.461608
\(593\) 9.44509e6 1.10298 0.551492 0.834180i \(-0.314059\pi\)
0.551492 + 0.834180i \(0.314059\pi\)
\(594\) −995424. −0.115756
\(595\) 3.20767e6 0.371447
\(596\) −2.12472e6 −0.245012
\(597\) −2.60649e6 −0.299310
\(598\) 685601. 0.0784004
\(599\) 8.27369e6 0.942177 0.471088 0.882086i \(-0.343861\pi\)
0.471088 + 0.882086i \(0.343861\pi\)
\(600\) 176322. 0.0199953
\(601\) −1.28982e7 −1.45661 −0.728304 0.685254i \(-0.759691\pi\)
−0.728304 + 0.685254i \(0.759691\pi\)
\(602\) −7.51245e6 −0.844871
\(603\) −875408. −0.0980432
\(604\) 3.59751e6 0.401245
\(605\) −366025. −0.0406558
\(606\) 3.01187e6 0.333161
\(607\) −884063. −0.0973893 −0.0486947 0.998814i \(-0.515506\pi\)
−0.0486947 + 0.998814i \(0.515506\pi\)
\(608\) −832742. −0.0913590
\(609\) −762971. −0.0833614
\(610\) −1.26888e6 −0.138069
\(611\) −1.67938e6 −0.181989
\(612\) 4.98659e6 0.538177
\(613\) 7.44165e6 0.799868 0.399934 0.916544i \(-0.369033\pi\)
0.399934 + 0.916544i \(0.369033\pi\)
\(614\) −4.76174e6 −0.509735
\(615\) 316855. 0.0337810
\(616\) −712760. −0.0756818
\(617\) 1.54607e6 0.163499 0.0817496 0.996653i \(-0.473949\pi\)
0.0817496 + 0.996653i \(0.473949\pi\)
\(618\) −59075.6 −0.00622210
\(619\) −337532. −0.0354069 −0.0177035 0.999843i \(-0.505635\pi\)
−0.0177035 + 0.999843i \(0.505635\pi\)
\(620\) −1.47180e6 −0.153769
\(621\) 5.48729e6 0.570991
\(622\) −5.03753e6 −0.522086
\(623\) −1.01878e7 −1.05162
\(624\) 72494.1 0.00745317
\(625\) 390625. 0.0400000
\(626\) −8.94633e6 −0.912450
\(627\) −433753. −0.0440629
\(628\) 3.21535e6 0.325333
\(629\) −2.14343e7 −2.16014
\(630\) −2.05774e6 −0.206556
\(631\) −2.60561e6 −0.260517 −0.130259 0.991480i \(-0.541581\pi\)
−0.130259 + 0.991480i \(0.541581\pi\)
\(632\) −374179. −0.0372638
\(633\) 2.50507e6 0.248491
\(634\) −9.44499e6 −0.933208
\(635\) −7.87843e6 −0.775364
\(636\) −34671.0 −0.00339879
\(637\) 535491. 0.0522882
\(638\) −910184. −0.0885273
\(639\) 5.28893e6 0.512408
\(640\) 409600. 0.0395285
\(641\) 1.37962e7 1.32622 0.663108 0.748523i \(-0.269237\pi\)
0.663108 + 0.748523i \(0.269237\pi\)
\(642\) −770323. −0.0737624
\(643\) 4.97213e6 0.474258 0.237129 0.971478i \(-0.423794\pi\)
0.237129 + 0.971478i \(0.423794\pi\)
\(644\) 3.92910e6 0.373318
\(645\) 2.24870e6 0.212829
\(646\) 4.53463e6 0.427524
\(647\) 1.75328e7 1.64661 0.823304 0.567601i \(-0.192128\pi\)
0.823304 + 0.567601i \(0.192128\pi\)
\(648\) −2.89673e6 −0.271001
\(649\) −3.72387e6 −0.347042
\(650\) 160604. 0.0149098
\(651\) −1.49284e6 −0.138058
\(652\) −5.04353e6 −0.464639
\(653\) −1.67551e6 −0.153768 −0.0768838 0.997040i \(-0.524497\pi\)
−0.0768838 + 0.997040i \(0.524497\pi\)
\(654\) 870596. 0.0795926
\(655\) −6.58209e6 −0.599461
\(656\) 736062. 0.0667813
\(657\) −1.11360e7 −1.00650
\(658\) −9.62432e6 −0.866573
\(659\) −4.27468e6 −0.383434 −0.191717 0.981450i \(-0.561406\pi\)
−0.191717 + 0.981450i \(0.561406\pi\)
\(660\) 213350. 0.0190648
\(661\) −1.01563e7 −0.904131 −0.452066 0.891985i \(-0.649313\pi\)
−0.452066 + 0.891985i \(0.649313\pi\)
\(662\) 1.22401e7 1.08552
\(663\) −394761. −0.0348779
\(664\) 1.91016e6 0.168131
\(665\) −1.87123e6 −0.164087
\(666\) 1.37502e7 1.20122
\(667\) 5.01740e6 0.436681
\(668\) −7.39113e6 −0.640870
\(669\) −1.56625e6 −0.135299
\(670\) 391560. 0.0336986
\(671\) −1.53535e6 −0.131644
\(672\) 415455. 0.0354896
\(673\) 1.09681e7 0.933454 0.466727 0.884402i \(-0.345433\pi\)
0.466727 + 0.884402i \(0.345433\pi\)
\(674\) −1.63329e7 −1.38489
\(675\) 1.28541e6 0.108588
\(676\) −5.87466e6 −0.494442
\(677\) −8.84010e6 −0.741286 −0.370643 0.928775i \(-0.620863\pi\)
−0.370643 + 0.928775i \(0.620863\pi\)
\(678\) 1.99928e6 0.167032
\(679\) −6.06235e6 −0.504622
\(680\) −2.23045e6 −0.184978
\(681\) −2.76619e6 −0.228567
\(682\) −1.78088e6 −0.146613
\(683\) 5.98047e6 0.490551 0.245275 0.969453i \(-0.421122\pi\)
0.245275 + 0.969453i \(0.421122\pi\)
\(684\) −2.90899e6 −0.237740
\(685\) −2.53209e6 −0.206183
\(686\) 9.25652e6 0.750996
\(687\) 4.35507e6 0.352049
\(688\) 5.22377e6 0.420739
\(689\) −31580.3 −0.00253436
\(690\) −1.17609e6 −0.0940414
\(691\) 3.64212e6 0.290175 0.145087 0.989419i \(-0.453654\pi\)
0.145087 + 0.989419i \(0.453654\pi\)
\(692\) −4.55374e6 −0.361496
\(693\) −2.48986e6 −0.196944
\(694\) −9.00473e6 −0.709695
\(695\) 3.90034e6 0.306295
\(696\) 530531. 0.0415133
\(697\) −4.00817e6 −0.312510
\(698\) −4.37365e6 −0.339786
\(699\) 648124. 0.0501724
\(700\) 920403. 0.0709958
\(701\) −1.44054e6 −0.110721 −0.0553607 0.998466i \(-0.517631\pi\)
−0.0553607 + 0.998466i \(0.517631\pi\)
\(702\) 528492. 0.0404758
\(703\) 1.25040e7 0.954244
\(704\) 495616. 0.0376889
\(705\) 2.88084e6 0.218296
\(706\) 6.95515e6 0.525164
\(707\) 1.57220e7 1.18293
\(708\) 2.17058e6 0.162739
\(709\) −2.44669e7 −1.82795 −0.913975 0.405771i \(-0.867003\pi\)
−0.913975 + 0.405771i \(0.867003\pi\)
\(710\) −2.36568e6 −0.176121
\(711\) −1.30711e6 −0.0969700
\(712\) 7.08404e6 0.523698
\(713\) 9.81712e6 0.723203
\(714\) −2.26233e6 −0.166078
\(715\) 194331. 0.0142160
\(716\) −9.85936e6 −0.718731
\(717\) 6.00386e6 0.436147
\(718\) −7.74545e6 −0.560707
\(719\) −2.27569e6 −0.164169 −0.0820846 0.996625i \(-0.526158\pi\)
−0.0820846 + 0.996625i \(0.526158\pi\)
\(720\) 1.43084e6 0.102863
\(721\) −308375. −0.0220923
\(722\) 7.25906e6 0.518248
\(723\) −6.80030e6 −0.483818
\(724\) 2.50605e6 0.177682
\(725\) 1.17534e6 0.0830460
\(726\) 258153. 0.0181776
\(727\) 1.87924e7 1.31870 0.659351 0.751835i \(-0.270831\pi\)
0.659351 + 0.751835i \(0.270831\pi\)
\(728\) 378420. 0.0264634
\(729\) −7.91605e6 −0.551683
\(730\) 4.98100e6 0.345947
\(731\) −2.84457e7 −1.96889
\(732\) 894928. 0.0617320
\(733\) −355042. −0.0244073 −0.0122036 0.999926i \(-0.503885\pi\)
−0.0122036 + 0.999926i \(0.503885\pi\)
\(734\) 5.47985e6 0.375429
\(735\) −918593. −0.0627198
\(736\) −2.73209e6 −0.185909
\(737\) 473788. 0.0321304
\(738\) 2.57126e6 0.173782
\(739\) −1.97063e7 −1.32738 −0.663689 0.748008i \(-0.731010\pi\)
−0.663689 + 0.748008i \(0.731010\pi\)
\(740\) −6.15032e6 −0.412875
\(741\) 230289. 0.0154073
\(742\) −180983. −0.0120678
\(743\) 1.74672e7 1.16078 0.580391 0.814338i \(-0.302900\pi\)
0.580391 + 0.814338i \(0.302900\pi\)
\(744\) 1.03804e6 0.0687517
\(745\) 3.31988e6 0.219145
\(746\) −4.09081e6 −0.269130
\(747\) 6.67269e6 0.437521
\(748\) −2.69884e6 −0.176369
\(749\) −4.02109e6 −0.261902
\(750\) −275503. −0.0178844
\(751\) −4.94160e6 −0.319718 −0.159859 0.987140i \(-0.551104\pi\)
−0.159859 + 0.987140i \(0.551104\pi\)
\(752\) 6.69225e6 0.431546
\(753\) 2.42978e6 0.156163
\(754\) 483237. 0.0309550
\(755\) −5.62112e6 −0.358885
\(756\) 3.02873e6 0.192733
\(757\) −2.46846e7 −1.56562 −0.782810 0.622261i \(-0.786214\pi\)
−0.782810 + 0.622261i \(0.786214\pi\)
\(758\) −9.22417e6 −0.583115
\(759\) −1.42307e6 −0.0896650
\(760\) 1.30116e6 0.0817140
\(761\) 2.49595e7 1.56234 0.781169 0.624320i \(-0.214624\pi\)
0.781169 + 0.624320i \(0.214624\pi\)
\(762\) 5.55657e6 0.346672
\(763\) 4.54452e6 0.282603
\(764\) 1.52939e6 0.0947949
\(765\) −7.79155e6 −0.481360
\(766\) 1.77864e7 1.09526
\(767\) 1.97708e6 0.121349
\(768\) −288886. −0.0176735
\(769\) 6.12897e6 0.373742 0.186871 0.982384i \(-0.440165\pi\)
0.186871 + 0.982384i \(0.440165\pi\)
\(770\) 1.11369e6 0.0676918
\(771\) 6.64723e6 0.402722
\(772\) 1.19785e7 0.723370
\(773\) 1.14936e7 0.691842 0.345921 0.938264i \(-0.387566\pi\)
0.345921 + 0.938264i \(0.387566\pi\)
\(774\) 1.82480e7 1.09487
\(775\) 2.29969e6 0.137535
\(776\) 4.21544e6 0.251298
\(777\) −6.23824e6 −0.370689
\(778\) 1.21757e7 0.721179
\(779\) 2.33822e6 0.138051
\(780\) −113272. −0.00666632
\(781\) −2.86247e6 −0.167924
\(782\) 1.48774e7 0.869982
\(783\) 3.86764e6 0.225446
\(784\) −2.13391e6 −0.123990
\(785\) −5.02398e6 −0.290987
\(786\) 4.64227e6 0.268024
\(787\) −1.34777e7 −0.775673 −0.387837 0.921728i \(-0.626778\pi\)
−0.387837 + 0.921728i \(0.626778\pi\)
\(788\) −7.30385e6 −0.419022
\(789\) −1.82297e6 −0.104253
\(790\) 584655. 0.0333297
\(791\) 1.04363e7 0.593068
\(792\) 1.73132e6 0.0980763
\(793\) 815150. 0.0460314
\(794\) 1.18867e7 0.669128
\(795\) 54173.5 0.00303997
\(796\) 9.46085e6 0.529234
\(797\) −2.33863e7 −1.30411 −0.652056 0.758171i \(-0.726093\pi\)
−0.652056 + 0.758171i \(0.726093\pi\)
\(798\) 1.31976e6 0.0733648
\(799\) −3.64422e7 −2.01947
\(800\) −640000. −0.0353553
\(801\) 2.47464e7 1.36280
\(802\) −1.73982e7 −0.955143
\(803\) 6.02701e6 0.329847
\(804\) −276163. −0.0150669
\(805\) −6.13922e6 −0.333905
\(806\) 945507. 0.0512657
\(807\) −8.48082e6 −0.458410
\(808\) −1.09322e7 −0.589089
\(809\) 3.43344e7 1.84441 0.922207 0.386696i \(-0.126384\pi\)
0.922207 + 0.386696i \(0.126384\pi\)
\(810\) 4.52614e6 0.242391
\(811\) −3.01851e7 −1.61154 −0.805769 0.592231i \(-0.798247\pi\)
−0.805769 + 0.592231i \(0.798247\pi\)
\(812\) 2.76937e6 0.147398
\(813\) −6.01721e6 −0.319278
\(814\) −7.44188e6 −0.393660
\(815\) 7.88052e6 0.415586
\(816\) 1.57311e6 0.0827053
\(817\) 1.65941e7 0.869759
\(818\) −356767. −0.0186424
\(819\) 1.32192e6 0.0688646
\(820\) −1.15010e6 −0.0597310
\(821\) −1.75961e7 −0.911087 −0.455543 0.890214i \(-0.650555\pi\)
−0.455543 + 0.890214i \(0.650555\pi\)
\(822\) 1.78585e6 0.0921862
\(823\) 2.02786e7 1.04361 0.521804 0.853065i \(-0.325259\pi\)
0.521804 + 0.853065i \(0.325259\pi\)
\(824\) 214428. 0.0110018
\(825\) −333359. −0.0170521
\(826\) 1.13304e7 0.577825
\(827\) 3.28389e7 1.66965 0.834824 0.550516i \(-0.185569\pi\)
0.834824 + 0.550516i \(0.185569\pi\)
\(828\) −9.54393e6 −0.483784
\(829\) −2.40343e7 −1.21463 −0.607317 0.794460i \(-0.707754\pi\)
−0.607317 + 0.794460i \(0.707754\pi\)
\(830\) −2.98462e6 −0.150381
\(831\) −2.03962e6 −0.102458
\(832\) −263133. −0.0131785
\(833\) 1.16201e7 0.580224
\(834\) −2.75086e6 −0.136947
\(835\) 1.15486e7 0.573211
\(836\) 1.57440e6 0.0779112
\(837\) 7.56748e6 0.373369
\(838\) 1.67427e7 0.823597
\(839\) −1.85037e7 −0.907515 −0.453757 0.891125i \(-0.649917\pi\)
−0.453757 + 0.891125i \(0.649917\pi\)
\(840\) −649149. −0.0317429
\(841\) −1.69747e7 −0.827584
\(842\) −7.85553e6 −0.381852
\(843\) −5.80175e6 −0.281184
\(844\) −9.09271e6 −0.439377
\(845\) 9.17915e6 0.442243
\(846\) 2.33778e7 1.12300
\(847\) 1.34756e6 0.0645416
\(848\) 125846. 0.00600967
\(849\) 5.25621e6 0.250267
\(850\) 3.48507e6 0.165449
\(851\) 4.10235e7 1.94182
\(852\) 1.66849e6 0.0787451
\(853\) −5.67139e6 −0.266881 −0.133440 0.991057i \(-0.542602\pi\)
−0.133440 + 0.991057i \(0.542602\pi\)
\(854\) 4.67153e6 0.219187
\(855\) 4.54529e6 0.212641
\(856\) 2.79606e6 0.130425
\(857\) −69849.7 −0.00324872 −0.00162436 0.999999i \(-0.500517\pi\)
−0.00162436 + 0.999999i \(0.500517\pi\)
\(858\) −137059. −0.00635609
\(859\) 1.24652e7 0.576391 0.288195 0.957572i \(-0.406945\pi\)
0.288195 + 0.957572i \(0.406945\pi\)
\(860\) −8.16214e6 −0.376321
\(861\) −1.16654e6 −0.0536279
\(862\) 5.30246e6 0.243058
\(863\) −3.28985e7 −1.50366 −0.751829 0.659358i \(-0.770828\pi\)
−0.751829 + 0.659358i \(0.770828\pi\)
\(864\) −2.10602e6 −0.0959794
\(865\) 7.11522e6 0.323332
\(866\) 2.06406e7 0.935252
\(867\) −2.30744e6 −0.104252
\(868\) 5.41859e6 0.244111
\(869\) 707433. 0.0317787
\(870\) −828954. −0.0371306
\(871\) −251544. −0.0112349
\(872\) −3.16002e6 −0.140734
\(873\) 1.47257e7 0.653942
\(874\) −8.67892e6 −0.384315
\(875\) −1.43813e6 −0.0635006
\(876\) −3.51304e6 −0.154676
\(877\) −3.07510e7 −1.35008 −0.675042 0.737779i \(-0.735875\pi\)
−0.675042 + 0.737779i \(0.735875\pi\)
\(878\) −1.57259e7 −0.688462
\(879\) 2.83930e6 0.123948
\(880\) −774400. −0.0337100
\(881\) −1.53544e7 −0.666489 −0.333245 0.942840i \(-0.608143\pi\)
−0.333245 + 0.942840i \(0.608143\pi\)
\(882\) −7.45432e6 −0.322654
\(883\) 2.65947e7 1.14787 0.573937 0.818900i \(-0.305415\pi\)
0.573937 + 0.818900i \(0.305415\pi\)
\(884\) 1.43287e6 0.0616705
\(885\) −3.39153e6 −0.145558
\(886\) −1.22670e7 −0.524993
\(887\) −4.22486e6 −0.180303 −0.0901517 0.995928i \(-0.528735\pi\)
−0.0901517 + 0.995928i \(0.528735\pi\)
\(888\) 4.33774e6 0.184600
\(889\) 2.90053e7 1.23090
\(890\) −1.10688e7 −0.468410
\(891\) 5.47663e6 0.231110
\(892\) 5.68505e6 0.239234
\(893\) 2.12590e7 0.892101
\(894\) −2.34147e6 −0.0979818
\(895\) 1.54052e7 0.642852
\(896\) −1.50799e6 −0.0627520
\(897\) 755541. 0.0313528
\(898\) −1.87239e7 −0.774827
\(899\) 6.91947e6 0.285544
\(900\) −2.23569e6 −0.0920037
\(901\) −685286. −0.0281229
\(902\) −1.39162e6 −0.0569512
\(903\) −8.27882e6 −0.337870
\(904\) −7.25684e6 −0.295343
\(905\) −3.91571e6 −0.158924
\(906\) 3.96451e6 0.160461
\(907\) −1.13522e7 −0.458207 −0.229104 0.973402i \(-0.573579\pi\)
−0.229104 + 0.973402i \(0.573579\pi\)
\(908\) 1.00405e7 0.404148
\(909\) −3.81892e7 −1.53296
\(910\) −591281. −0.0236696
\(911\) −3.28560e7 −1.31165 −0.655826 0.754912i \(-0.727680\pi\)
−0.655826 + 0.754912i \(0.727680\pi\)
\(912\) −917692. −0.0365351
\(913\) −3.61139e6 −0.143383
\(914\) 2.74560e7 1.08711
\(915\) −1.39833e6 −0.0552148
\(916\) −1.58077e7 −0.622486
\(917\) 2.42327e7 0.951653
\(918\) 1.14682e7 0.449146
\(919\) −3.87685e7 −1.51423 −0.757113 0.653284i \(-0.773391\pi\)
−0.757113 + 0.653284i \(0.773391\pi\)
\(920\) 4.26889e6 0.166282
\(921\) −5.24750e6 −0.203847
\(922\) 1.54151e7 0.597200
\(923\) 1.51975e6 0.0587175
\(924\) −785470. −0.0302656
\(925\) 9.60987e6 0.369286
\(926\) 1.26330e7 0.484148
\(927\) 749054. 0.0286295
\(928\) −1.92568e6 −0.0734030
\(929\) 3.48798e7 1.32597 0.662986 0.748632i \(-0.269289\pi\)
0.662986 + 0.748632i \(0.269289\pi\)
\(930\) −1.62194e6 −0.0614934
\(931\) −6.77870e6 −0.256314
\(932\) −2.35251e6 −0.0887139
\(933\) −5.55143e6 −0.208786
\(934\) −784436. −0.0294232
\(935\) 4.21694e6 0.157750
\(936\) −919195. −0.0342940
\(937\) −4.14192e7 −1.54118 −0.770588 0.637334i \(-0.780037\pi\)
−0.770588 + 0.637334i \(0.780037\pi\)
\(938\) −1.44157e6 −0.0534970
\(939\) −9.85897e6 −0.364895
\(940\) −1.04566e7 −0.385987
\(941\) −8.65196e6 −0.318523 −0.159261 0.987236i \(-0.550911\pi\)
−0.159261 + 0.987236i \(0.550911\pi\)
\(942\) 3.54335e6 0.130103
\(943\) 7.67131e6 0.280925
\(944\) −7.87859e6 −0.287752
\(945\) −4.73239e6 −0.172386
\(946\) −9.87619e6 −0.358808
\(947\) 4.83595e7 1.75229 0.876147 0.482044i \(-0.160106\pi\)
0.876147 + 0.482044i \(0.160106\pi\)
\(948\) −412350. −0.0149020
\(949\) −3.19987e6 −0.115337
\(950\) −2.03306e6 −0.0730872
\(951\) −1.04085e7 −0.373196
\(952\) 8.21164e6 0.293655
\(953\) −3.85111e7 −1.37358 −0.686789 0.726857i \(-0.740980\pi\)
−0.686789 + 0.726857i \(0.740980\pi\)
\(954\) 439614. 0.0156387
\(955\) −2.38967e6 −0.0847871
\(956\) −2.17923e7 −0.771186
\(957\) −1.00303e6 −0.0354027
\(958\) −2.05411e7 −0.723120
\(959\) 9.32216e6 0.327318
\(960\) 451384. 0.0158077
\(961\) −1.50904e7 −0.527100
\(962\) 3.95106e6 0.137650
\(963\) 9.76737e6 0.339400
\(964\) 2.46832e7 0.855478
\(965\) −1.87165e7 −0.647002
\(966\) 4.32992e6 0.149292
\(967\) −4.49114e7 −1.54451 −0.772254 0.635314i \(-0.780871\pi\)
−0.772254 + 0.635314i \(0.780871\pi\)
\(968\) −937024. −0.0321412
\(969\) 4.99722e6 0.170970
\(970\) −6.58662e6 −0.224768
\(971\) −5.38907e7 −1.83428 −0.917140 0.398565i \(-0.869508\pi\)
−0.917140 + 0.398565i \(0.869508\pi\)
\(972\) −1.11885e7 −0.379846
\(973\) −1.43595e7 −0.486248
\(974\) −9.75472e6 −0.329471
\(975\) 176988. 0.00596254
\(976\) −3.24834e6 −0.109153
\(977\) 5.38133e6 0.180365 0.0901827 0.995925i \(-0.471255\pi\)
0.0901827 + 0.995925i \(0.471255\pi\)
\(978\) −5.55804e6 −0.185812
\(979\) −1.33933e7 −0.446611
\(980\) 3.33424e6 0.110900
\(981\) −1.10388e7 −0.366226
\(982\) −1.63075e7 −0.539645
\(983\) −4.23163e7 −1.39677 −0.698384 0.715724i \(-0.746097\pi\)
−0.698384 + 0.715724i \(0.746097\pi\)
\(984\) 811149. 0.0267063
\(985\) 1.14123e7 0.374784
\(986\) 1.04861e7 0.343497
\(987\) −1.06061e7 −0.346548
\(988\) −835884. −0.0272429
\(989\) 5.44427e7 1.76990
\(990\) −2.70519e6 −0.0877221
\(991\) −1.67404e7 −0.541480 −0.270740 0.962652i \(-0.587268\pi\)
−0.270740 + 0.962652i \(0.587268\pi\)
\(992\) −3.76781e6 −0.121565
\(993\) 1.34887e7 0.434108
\(994\) 8.70951e6 0.279594
\(995\) −1.47826e7 −0.473361
\(996\) 2.10502e6 0.0672369
\(997\) −2.98987e7 −0.952608 −0.476304 0.879281i \(-0.658024\pi\)
−0.476304 + 0.879281i \(0.658024\pi\)
\(998\) −3.51516e6 −0.111717
\(999\) 3.16228e7 1.00250
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 110.6.a.e.1.1 2
3.2 odd 2 990.6.a.s.1.2 2
4.3 odd 2 880.6.a.f.1.2 2
5.2 odd 4 550.6.b.h.199.2 4
5.3 odd 4 550.6.b.h.199.3 4
5.4 even 2 550.6.a.j.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.6.a.e.1.1 2 1.1 even 1 trivial
550.6.a.j.1.2 2 5.4 even 2
550.6.b.h.199.2 4 5.2 odd 4
550.6.b.h.199.3 4 5.3 odd 4
880.6.a.f.1.2 2 4.3 odd 2
990.6.a.s.1.2 2 3.2 odd 2