Properties

Label 1100.1.f.a
Level $1100$
Weight $1$
Character orbit 1100.f
Self dual yes
Analytic conductor $0.549$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -11
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,1,Mod(901,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.901");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1100.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.548971513896\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.44.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.242000.1
Stark unit: Root of $x^{6} - 1376x^{5} + 9595x^{4} - 1876940x^{3} + 9595x^{2} - 1376x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} + q^{11} + q^{23} - q^{27} - q^{31} + q^{33} + q^{37} - 2 q^{47} + q^{49} - 2 q^{53} - q^{59} + q^{67} + q^{69} - q^{71} - q^{81} - q^{89} - q^{93} + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(0\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
901.1
0
0 1.00000 0 0 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.1.f.a 1
5.b even 2 1 44.1.d.a 1
5.c odd 4 2 1100.1.e.a 2
11.b odd 2 1 CM 1100.1.f.a 1
15.d odd 2 1 396.1.f.a 1
20.d odd 2 1 176.1.h.a 1
35.c odd 2 1 2156.1.h.a 1
35.i odd 6 2 2156.1.k.a 2
35.j even 6 2 2156.1.k.b 2
40.e odd 2 1 704.1.h.a 1
40.f even 2 1 704.1.h.b 1
45.h odd 6 2 3564.1.m.a 2
45.j even 6 2 3564.1.m.b 2
55.d odd 2 1 44.1.d.a 1
55.e even 4 2 1100.1.e.a 2
55.h odd 10 4 484.1.f.a 4
55.j even 10 4 484.1.f.a 4
60.h even 2 1 1584.1.j.a 1
80.k odd 4 2 2816.1.b.a 2
80.q even 4 2 2816.1.b.b 2
165.d even 2 1 396.1.f.a 1
220.g even 2 1 176.1.h.a 1
220.n odd 10 4 1936.1.n.a 4
220.o even 10 4 1936.1.n.a 4
385.h even 2 1 2156.1.h.a 1
385.o even 6 2 2156.1.k.a 2
385.q odd 6 2 2156.1.k.b 2
440.c even 2 1 704.1.h.a 1
440.o odd 2 1 704.1.h.b 1
495.o odd 6 2 3564.1.m.b 2
495.r even 6 2 3564.1.m.a 2
660.g odd 2 1 1584.1.j.a 1
880.x odd 4 2 2816.1.b.b 2
880.bi even 4 2 2816.1.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.1.d.a 1 5.b even 2 1
44.1.d.a 1 55.d odd 2 1
176.1.h.a 1 20.d odd 2 1
176.1.h.a 1 220.g even 2 1
396.1.f.a 1 15.d odd 2 1
396.1.f.a 1 165.d even 2 1
484.1.f.a 4 55.h odd 10 4
484.1.f.a 4 55.j even 10 4
704.1.h.a 1 40.e odd 2 1
704.1.h.a 1 440.c even 2 1
704.1.h.b 1 40.f even 2 1
704.1.h.b 1 440.o odd 2 1
1100.1.e.a 2 5.c odd 4 2
1100.1.e.a 2 55.e even 4 2
1100.1.f.a 1 1.a even 1 1 trivial
1100.1.f.a 1 11.b odd 2 1 CM
1584.1.j.a 1 60.h even 2 1
1584.1.j.a 1 660.g odd 2 1
1936.1.n.a 4 220.n odd 10 4
1936.1.n.a 4 220.o even 10 4
2156.1.h.a 1 35.c odd 2 1
2156.1.h.a 1 385.h even 2 1
2156.1.k.a 2 35.i odd 6 2
2156.1.k.a 2 385.o even 6 2
2156.1.k.b 2 35.j even 6 2
2156.1.k.b 2 385.q odd 6 2
2816.1.b.a 2 80.k odd 4 2
2816.1.b.a 2 880.bi even 4 2
2816.1.b.b 2 80.q even 4 2
2816.1.b.b 2 880.x odd 4 2
3564.1.m.a 2 45.h odd 6 2
3564.1.m.a 2 495.r even 6 2
3564.1.m.b 2 45.j even 6 2
3564.1.m.b 2 495.o odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 1 \) acting on \(S_{1}^{\mathrm{new}}(1100, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 1 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 1 \) Copy content Toggle raw display
$37$ \( T - 1 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T + 2 \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T + 1 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T - 1 \) Copy content Toggle raw display
$71$ \( T + 1 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 1 \) Copy content Toggle raw display
$97$ \( T - 1 \) Copy content Toggle raw display
show more
show less