Properties

Label 1104.4.a.h.1.2
Level $1104$
Weight $4$
Character 1104.1
Self dual yes
Analytic conductor $65.138$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1104,4,Mod(1,1104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1104, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1104.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1104 = 2^{4} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1104.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.1381086463\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1104.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -10.7639 q^{5} -10.6525 q^{7} +9.00000 q^{9} +52.3607 q^{11} -79.0820 q^{13} +32.2918 q^{15} -77.2361 q^{17} -50.7902 q^{19} +31.9574 q^{21} +23.0000 q^{23} -9.13777 q^{25} -27.0000 q^{27} +12.7477 q^{29} +12.4133 q^{31} -157.082 q^{33} +114.663 q^{35} -73.1084 q^{37} +237.246 q^{39} -38.8916 q^{41} -171.787 q^{43} -96.8754 q^{45} -614.545 q^{47} -229.525 q^{49} +231.708 q^{51} +269.597 q^{53} -563.607 q^{55} +152.371 q^{57} +534.768 q^{59} -838.604 q^{61} -95.8723 q^{63} +851.234 q^{65} +448.180 q^{67} -69.0000 q^{69} -628.604 q^{71} +925.266 q^{73} +27.4133 q^{75} -557.771 q^{77} +963.479 q^{79} +81.0000 q^{81} -133.358 q^{83} +831.364 q^{85} -38.2430 q^{87} -778.581 q^{89} +842.420 q^{91} -37.2399 q^{93} +546.703 q^{95} +1603.57 q^{97} +471.246 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 26 q^{5} + 10 q^{7} + 18 q^{9} + 60 q^{11} - 24 q^{13} + 78 q^{15} - 150 q^{17} + 46 q^{19} - 30 q^{21} + 46 q^{23} + 98 q^{25} - 54 q^{27} - 216 q^{29} - 324 q^{31} - 180 q^{33} - 200 q^{35}+ \cdots + 540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −10.7639 −0.962755 −0.481378 0.876513i \(-0.659863\pi\)
−0.481378 + 0.876513i \(0.659863\pi\)
\(6\) 0 0
\(7\) −10.6525 −0.575180 −0.287590 0.957754i \(-0.592854\pi\)
−0.287590 + 0.957754i \(0.592854\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 52.3607 1.43521 0.717606 0.696449i \(-0.245238\pi\)
0.717606 + 0.696449i \(0.245238\pi\)
\(12\) 0 0
\(13\) −79.0820 −1.68719 −0.843593 0.536984i \(-0.819564\pi\)
−0.843593 + 0.536984i \(0.819564\pi\)
\(14\) 0 0
\(15\) 32.2918 0.555847
\(16\) 0 0
\(17\) −77.2361 −1.10191 −0.550956 0.834534i \(-0.685737\pi\)
−0.550956 + 0.834534i \(0.685737\pi\)
\(18\) 0 0
\(19\) −50.7902 −0.613267 −0.306634 0.951828i \(-0.599203\pi\)
−0.306634 + 0.951828i \(0.599203\pi\)
\(20\) 0 0
\(21\) 31.9574 0.332080
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −9.13777 −0.0731021
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 12.7477 0.0816270 0.0408135 0.999167i \(-0.487005\pi\)
0.0408135 + 0.999167i \(0.487005\pi\)
\(30\) 0 0
\(31\) 12.4133 0.0719192 0.0359596 0.999353i \(-0.488551\pi\)
0.0359596 + 0.999353i \(0.488551\pi\)
\(32\) 0 0
\(33\) −157.082 −0.828620
\(34\) 0 0
\(35\) 114.663 0.553757
\(36\) 0 0
\(37\) −73.1084 −0.324836 −0.162418 0.986722i \(-0.551929\pi\)
−0.162418 + 0.986722i \(0.551929\pi\)
\(38\) 0 0
\(39\) 237.246 0.974097
\(40\) 0 0
\(41\) −38.8916 −0.148143 −0.0740714 0.997253i \(-0.523599\pi\)
−0.0740714 + 0.997253i \(0.523599\pi\)
\(42\) 0 0
\(43\) −171.787 −0.609239 −0.304620 0.952474i \(-0.598529\pi\)
−0.304620 + 0.952474i \(0.598529\pi\)
\(44\) 0 0
\(45\) −96.8754 −0.320918
\(46\) 0 0
\(47\) −614.545 −1.90725 −0.953623 0.301003i \(-0.902679\pi\)
−0.953623 + 0.301003i \(0.902679\pi\)
\(48\) 0 0
\(49\) −229.525 −0.669168
\(50\) 0 0
\(51\) 231.708 0.636189
\(52\) 0 0
\(53\) 269.597 0.698716 0.349358 0.936989i \(-0.386400\pi\)
0.349358 + 0.936989i \(0.386400\pi\)
\(54\) 0 0
\(55\) −563.607 −1.38176
\(56\) 0 0
\(57\) 152.371 0.354070
\(58\) 0 0
\(59\) 534.768 1.18001 0.590007 0.807398i \(-0.299125\pi\)
0.590007 + 0.807398i \(0.299125\pi\)
\(60\) 0 0
\(61\) −838.604 −1.76020 −0.880100 0.474788i \(-0.842525\pi\)
−0.880100 + 0.474788i \(0.842525\pi\)
\(62\) 0 0
\(63\) −95.8723 −0.191727
\(64\) 0 0
\(65\) 851.234 1.62435
\(66\) 0 0
\(67\) 448.180 0.817223 0.408612 0.912708i \(-0.366013\pi\)
0.408612 + 0.912708i \(0.366013\pi\)
\(68\) 0 0
\(69\) −69.0000 −0.120386
\(70\) 0 0
\(71\) −628.604 −1.05073 −0.525363 0.850878i \(-0.676070\pi\)
−0.525363 + 0.850878i \(0.676070\pi\)
\(72\) 0 0
\(73\) 925.266 1.48348 0.741741 0.670686i \(-0.234000\pi\)
0.741741 + 0.670686i \(0.234000\pi\)
\(74\) 0 0
\(75\) 27.4133 0.0422055
\(76\) 0 0
\(77\) −557.771 −0.825505
\(78\) 0 0
\(79\) 963.479 1.37215 0.686075 0.727531i \(-0.259332\pi\)
0.686075 + 0.727531i \(0.259332\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −133.358 −0.176360 −0.0881801 0.996105i \(-0.528105\pi\)
−0.0881801 + 0.996105i \(0.528105\pi\)
\(84\) 0 0
\(85\) 831.364 1.06087
\(86\) 0 0
\(87\) −38.2430 −0.0471274
\(88\) 0 0
\(89\) −778.581 −0.927297 −0.463649 0.886019i \(-0.653460\pi\)
−0.463649 + 0.886019i \(0.653460\pi\)
\(90\) 0 0
\(91\) 842.420 0.970435
\(92\) 0 0
\(93\) −37.2399 −0.0415226
\(94\) 0 0
\(95\) 546.703 0.590426
\(96\) 0 0
\(97\) 1603.57 1.67853 0.839266 0.543721i \(-0.182985\pi\)
0.839266 + 0.543721i \(0.182985\pi\)
\(98\) 0 0
\(99\) 471.246 0.478404
\(100\) 0 0
\(101\) 1229.04 1.21084 0.605418 0.795908i \(-0.293006\pi\)
0.605418 + 0.795908i \(0.293006\pi\)
\(102\) 0 0
\(103\) −215.066 −0.205738 −0.102869 0.994695i \(-0.532802\pi\)
−0.102869 + 0.994695i \(0.532802\pi\)
\(104\) 0 0
\(105\) −343.988 −0.319712
\(106\) 0 0
\(107\) 1586.58 1.43346 0.716730 0.697351i \(-0.245638\pi\)
0.716730 + 0.697351i \(0.245638\pi\)
\(108\) 0 0
\(109\) 822.255 0.722549 0.361274 0.932460i \(-0.382342\pi\)
0.361274 + 0.932460i \(0.382342\pi\)
\(110\) 0 0
\(111\) 219.325 0.187544
\(112\) 0 0
\(113\) 19.7005 0.0164006 0.00820031 0.999966i \(-0.497390\pi\)
0.00820031 + 0.999966i \(0.497390\pi\)
\(114\) 0 0
\(115\) −247.570 −0.200748
\(116\) 0 0
\(117\) −711.738 −0.562395
\(118\) 0 0
\(119\) 822.755 0.633797
\(120\) 0 0
\(121\) 1410.64 1.05984
\(122\) 0 0
\(123\) 116.675 0.0855303
\(124\) 0 0
\(125\) 1443.85 1.03313
\(126\) 0 0
\(127\) −1143.23 −0.798784 −0.399392 0.916780i \(-0.630779\pi\)
−0.399392 + 0.916780i \(0.630779\pi\)
\(128\) 0 0
\(129\) 515.361 0.351745
\(130\) 0 0
\(131\) −1154.64 −0.770085 −0.385043 0.922899i \(-0.625813\pi\)
−0.385043 + 0.922899i \(0.625813\pi\)
\(132\) 0 0
\(133\) 541.042 0.352739
\(134\) 0 0
\(135\) 290.626 0.185282
\(136\) 0 0
\(137\) −2153.10 −1.34271 −0.671356 0.741135i \(-0.734288\pi\)
−0.671356 + 0.741135i \(0.734288\pi\)
\(138\) 0 0
\(139\) 2392.16 1.45971 0.729857 0.683600i \(-0.239587\pi\)
0.729857 + 0.683600i \(0.239587\pi\)
\(140\) 0 0
\(141\) 1843.63 1.10115
\(142\) 0 0
\(143\) −4140.79 −2.42147
\(144\) 0 0
\(145\) −137.215 −0.0785868
\(146\) 0 0
\(147\) 688.574 0.386345
\(148\) 0 0
\(149\) −2259.80 −1.24248 −0.621242 0.783619i \(-0.713372\pi\)
−0.621242 + 0.783619i \(0.713372\pi\)
\(150\) 0 0
\(151\) 2410.84 1.29928 0.649639 0.760243i \(-0.274920\pi\)
0.649639 + 0.760243i \(0.274920\pi\)
\(152\) 0 0
\(153\) −695.125 −0.367304
\(154\) 0 0
\(155\) −133.616 −0.0692406
\(156\) 0 0
\(157\) −614.960 −0.312606 −0.156303 0.987709i \(-0.549958\pi\)
−0.156303 + 0.987709i \(0.549958\pi\)
\(158\) 0 0
\(159\) −808.790 −0.403404
\(160\) 0 0
\(161\) −245.007 −0.119933
\(162\) 0 0
\(163\) 50.8127 0.0244169 0.0122085 0.999925i \(-0.496114\pi\)
0.0122085 + 0.999925i \(0.496114\pi\)
\(164\) 0 0
\(165\) 1690.82 0.797759
\(166\) 0 0
\(167\) 2000.84 0.927125 0.463562 0.886064i \(-0.346571\pi\)
0.463562 + 0.886064i \(0.346571\pi\)
\(168\) 0 0
\(169\) 4056.97 1.84659
\(170\) 0 0
\(171\) −457.112 −0.204422
\(172\) 0 0
\(173\) −3796.78 −1.66858 −0.834288 0.551330i \(-0.814121\pi\)
−0.834288 + 0.551330i \(0.814121\pi\)
\(174\) 0 0
\(175\) 97.3398 0.0420469
\(176\) 0 0
\(177\) −1604.30 −0.681281
\(178\) 0 0
\(179\) 3084.16 1.28783 0.643913 0.765099i \(-0.277310\pi\)
0.643913 + 0.765099i \(0.277310\pi\)
\(180\) 0 0
\(181\) 4733.12 1.94370 0.971851 0.235597i \(-0.0757047\pi\)
0.971851 + 0.235597i \(0.0757047\pi\)
\(182\) 0 0
\(183\) 2515.81 1.01625
\(184\) 0 0
\(185\) 786.933 0.312738
\(186\) 0 0
\(187\) −4044.13 −1.58148
\(188\) 0 0
\(189\) 287.617 0.110693
\(190\) 0 0
\(191\) 1293.13 0.489885 0.244942 0.969538i \(-0.421231\pi\)
0.244942 + 0.969538i \(0.421231\pi\)
\(192\) 0 0
\(193\) −1171.75 −0.437019 −0.218510 0.975835i \(-0.570119\pi\)
−0.218510 + 0.975835i \(0.570119\pi\)
\(194\) 0 0
\(195\) −2553.70 −0.937817
\(196\) 0 0
\(197\) 4559.19 1.64888 0.824438 0.565952i \(-0.191491\pi\)
0.824438 + 0.565952i \(0.191491\pi\)
\(198\) 0 0
\(199\) 473.721 0.168750 0.0843748 0.996434i \(-0.473111\pi\)
0.0843748 + 0.996434i \(0.473111\pi\)
\(200\) 0 0
\(201\) −1344.54 −0.471824
\(202\) 0 0
\(203\) −135.794 −0.0469502
\(204\) 0 0
\(205\) 418.627 0.142625
\(206\) 0 0
\(207\) 207.000 0.0695048
\(208\) 0 0
\(209\) −2659.41 −0.880169
\(210\) 0 0
\(211\) 1423.56 0.464465 0.232232 0.972660i \(-0.425397\pi\)
0.232232 + 0.972660i \(0.425397\pi\)
\(212\) 0 0
\(213\) 1885.81 0.606637
\(214\) 0 0
\(215\) 1849.11 0.586548
\(216\) 0 0
\(217\) −132.232 −0.0413665
\(218\) 0 0
\(219\) −2775.80 −0.856489
\(220\) 0 0
\(221\) 6107.99 1.85913
\(222\) 0 0
\(223\) −6088.63 −1.82836 −0.914181 0.405305i \(-0.867165\pi\)
−0.914181 + 0.405305i \(0.867165\pi\)
\(224\) 0 0
\(225\) −82.2399 −0.0243674
\(226\) 0 0
\(227\) 4463.66 1.30513 0.652563 0.757734i \(-0.273694\pi\)
0.652563 + 0.757734i \(0.273694\pi\)
\(228\) 0 0
\(229\) 1298.87 0.374812 0.187406 0.982283i \(-0.439992\pi\)
0.187406 + 0.982283i \(0.439992\pi\)
\(230\) 0 0
\(231\) 1673.31 0.476606
\(232\) 0 0
\(233\) −1257.41 −0.353544 −0.176772 0.984252i \(-0.556566\pi\)
−0.176772 + 0.984252i \(0.556566\pi\)
\(234\) 0 0
\(235\) 6614.92 1.83621
\(236\) 0 0
\(237\) −2890.44 −0.792211
\(238\) 0 0
\(239\) −3473.96 −0.940217 −0.470108 0.882609i \(-0.655785\pi\)
−0.470108 + 0.882609i \(0.655785\pi\)
\(240\) 0 0
\(241\) −2140.92 −0.572235 −0.286118 0.958195i \(-0.592365\pi\)
−0.286118 + 0.958195i \(0.592365\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 2470.59 0.644245
\(246\) 0 0
\(247\) 4016.60 1.03470
\(248\) 0 0
\(249\) 400.073 0.101822
\(250\) 0 0
\(251\) 5613.17 1.41155 0.705777 0.708434i \(-0.250598\pi\)
0.705777 + 0.708434i \(0.250598\pi\)
\(252\) 0 0
\(253\) 1204.30 0.299263
\(254\) 0 0
\(255\) −2494.09 −0.612494
\(256\) 0 0
\(257\) 1017.98 0.247082 0.123541 0.992339i \(-0.460575\pi\)
0.123541 + 0.992339i \(0.460575\pi\)
\(258\) 0 0
\(259\) 778.785 0.186839
\(260\) 0 0
\(261\) 114.729 0.0272090
\(262\) 0 0
\(263\) 995.531 0.233411 0.116705 0.993167i \(-0.462767\pi\)
0.116705 + 0.993167i \(0.462767\pi\)
\(264\) 0 0
\(265\) −2901.92 −0.672693
\(266\) 0 0
\(267\) 2335.74 0.535375
\(268\) 0 0
\(269\) −3568.95 −0.808932 −0.404466 0.914553i \(-0.632543\pi\)
−0.404466 + 0.914553i \(0.632543\pi\)
\(270\) 0 0
\(271\) 6294.26 1.41088 0.705441 0.708768i \(-0.250749\pi\)
0.705441 + 0.708768i \(0.250749\pi\)
\(272\) 0 0
\(273\) −2527.26 −0.560281
\(274\) 0 0
\(275\) −478.460 −0.104917
\(276\) 0 0
\(277\) −2263.65 −0.491009 −0.245505 0.969395i \(-0.578954\pi\)
−0.245505 + 0.969395i \(0.578954\pi\)
\(278\) 0 0
\(279\) 111.720 0.0239731
\(280\) 0 0
\(281\) −505.900 −0.107400 −0.0537001 0.998557i \(-0.517102\pi\)
−0.0537001 + 0.998557i \(0.517102\pi\)
\(282\) 0 0
\(283\) 7018.20 1.47417 0.737083 0.675802i \(-0.236203\pi\)
0.737083 + 0.675802i \(0.236203\pi\)
\(284\) 0 0
\(285\) −1640.11 −0.340883
\(286\) 0 0
\(287\) 414.292 0.0852087
\(288\) 0 0
\(289\) 1052.41 0.214209
\(290\) 0 0
\(291\) −4810.70 −0.969101
\(292\) 0 0
\(293\) −9488.82 −1.89196 −0.945978 0.324232i \(-0.894894\pi\)
−0.945978 + 0.324232i \(0.894894\pi\)
\(294\) 0 0
\(295\) −5756.20 −1.13606
\(296\) 0 0
\(297\) −1413.74 −0.276207
\(298\) 0 0
\(299\) −1818.89 −0.351802
\(300\) 0 0
\(301\) 1829.96 0.350422
\(302\) 0 0
\(303\) −3687.13 −0.699076
\(304\) 0 0
\(305\) 9026.67 1.69464
\(306\) 0 0
\(307\) −4660.58 −0.866427 −0.433214 0.901291i \(-0.642620\pi\)
−0.433214 + 0.901291i \(0.642620\pi\)
\(308\) 0 0
\(309\) 645.197 0.118783
\(310\) 0 0
\(311\) −4378.51 −0.798336 −0.399168 0.916878i \(-0.630701\pi\)
−0.399168 + 0.916878i \(0.630701\pi\)
\(312\) 0 0
\(313\) −4444.17 −0.802553 −0.401277 0.915957i \(-0.631433\pi\)
−0.401277 + 0.915957i \(0.631433\pi\)
\(314\) 0 0
\(315\) 1031.96 0.184586
\(316\) 0 0
\(317\) 7881.61 1.39645 0.698226 0.715878i \(-0.253973\pi\)
0.698226 + 0.715878i \(0.253973\pi\)
\(318\) 0 0
\(319\) 667.477 0.117152
\(320\) 0 0
\(321\) −4759.73 −0.827609
\(322\) 0 0
\(323\) 3922.84 0.675767
\(324\) 0 0
\(325\) 722.633 0.123337
\(326\) 0 0
\(327\) −2466.77 −0.417164
\(328\) 0 0
\(329\) 6546.42 1.09701
\(330\) 0 0
\(331\) 127.060 0.0210993 0.0105497 0.999944i \(-0.496642\pi\)
0.0105497 + 0.999944i \(0.496642\pi\)
\(332\) 0 0
\(333\) −657.975 −0.108279
\(334\) 0 0
\(335\) −4824.18 −0.786786
\(336\) 0 0
\(337\) −1739.07 −0.281107 −0.140554 0.990073i \(-0.544888\pi\)
−0.140554 + 0.990073i \(0.544888\pi\)
\(338\) 0 0
\(339\) −59.1016 −0.00946890
\(340\) 0 0
\(341\) 649.969 0.103219
\(342\) 0 0
\(343\) 6098.81 0.960072
\(344\) 0 0
\(345\) 742.711 0.115902
\(346\) 0 0
\(347\) −7551.30 −1.16823 −0.584114 0.811672i \(-0.698558\pi\)
−0.584114 + 0.811672i \(0.698558\pi\)
\(348\) 0 0
\(349\) −6237.28 −0.956659 −0.478329 0.878180i \(-0.658758\pi\)
−0.478329 + 0.878180i \(0.658758\pi\)
\(350\) 0 0
\(351\) 2135.22 0.324699
\(352\) 0 0
\(353\) 1788.57 0.269678 0.134839 0.990868i \(-0.456948\pi\)
0.134839 + 0.990868i \(0.456948\pi\)
\(354\) 0 0
\(355\) 6766.25 1.01159
\(356\) 0 0
\(357\) −2468.27 −0.365923
\(358\) 0 0
\(359\) −2234.70 −0.328531 −0.164266 0.986416i \(-0.552525\pi\)
−0.164266 + 0.986416i \(0.552525\pi\)
\(360\) 0 0
\(361\) −4279.35 −0.623903
\(362\) 0 0
\(363\) −4231.92 −0.611896
\(364\) 0 0
\(365\) −9959.50 −1.42823
\(366\) 0 0
\(367\) −10551.7 −1.50080 −0.750399 0.660985i \(-0.770139\pi\)
−0.750399 + 0.660985i \(0.770139\pi\)
\(368\) 0 0
\(369\) −350.025 −0.0493809
\(370\) 0 0
\(371\) −2871.87 −0.401887
\(372\) 0 0
\(373\) −996.068 −0.138269 −0.0691347 0.997607i \(-0.522024\pi\)
−0.0691347 + 0.997607i \(0.522024\pi\)
\(374\) 0 0
\(375\) −4331.55 −0.596481
\(376\) 0 0
\(377\) −1008.11 −0.137720
\(378\) 0 0
\(379\) 11117.0 1.50670 0.753351 0.657619i \(-0.228436\pi\)
0.753351 + 0.657619i \(0.228436\pi\)
\(380\) 0 0
\(381\) 3429.70 0.461178
\(382\) 0 0
\(383\) −5315.09 −0.709108 −0.354554 0.935035i \(-0.615367\pi\)
−0.354554 + 0.935035i \(0.615367\pi\)
\(384\) 0 0
\(385\) 6003.81 0.794759
\(386\) 0 0
\(387\) −1546.08 −0.203080
\(388\) 0 0
\(389\) −8438.06 −1.09981 −0.549906 0.835227i \(-0.685336\pi\)
−0.549906 + 0.835227i \(0.685336\pi\)
\(390\) 0 0
\(391\) −1776.43 −0.229764
\(392\) 0 0
\(393\) 3463.91 0.444609
\(394\) 0 0
\(395\) −10370.8 −1.32104
\(396\) 0 0
\(397\) 11582.0 1.46419 0.732094 0.681204i \(-0.238543\pi\)
0.732094 + 0.681204i \(0.238543\pi\)
\(398\) 0 0
\(399\) −1623.13 −0.203654
\(400\) 0 0
\(401\) 4267.85 0.531487 0.265744 0.964044i \(-0.414383\pi\)
0.265744 + 0.964044i \(0.414383\pi\)
\(402\) 0 0
\(403\) −981.669 −0.121341
\(404\) 0 0
\(405\) −871.878 −0.106973
\(406\) 0 0
\(407\) −3828.00 −0.466209
\(408\) 0 0
\(409\) 6902.51 0.834491 0.417246 0.908794i \(-0.362995\pi\)
0.417246 + 0.908794i \(0.362995\pi\)
\(410\) 0 0
\(411\) 6459.29 0.775215
\(412\) 0 0
\(413\) −5696.60 −0.678720
\(414\) 0 0
\(415\) 1435.45 0.169792
\(416\) 0 0
\(417\) −7176.47 −0.842766
\(418\) 0 0
\(419\) 2241.24 0.261316 0.130658 0.991427i \(-0.458291\pi\)
0.130658 + 0.991427i \(0.458291\pi\)
\(420\) 0 0
\(421\) 9117.52 1.05549 0.527744 0.849403i \(-0.323038\pi\)
0.527744 + 0.849403i \(0.323038\pi\)
\(422\) 0 0
\(423\) −5530.90 −0.635749
\(424\) 0 0
\(425\) 705.765 0.0805521
\(426\) 0 0
\(427\) 8933.21 1.01243
\(428\) 0 0
\(429\) 12422.4 1.39804
\(430\) 0 0
\(431\) 1366.55 0.152725 0.0763623 0.997080i \(-0.475669\pi\)
0.0763623 + 0.997080i \(0.475669\pi\)
\(432\) 0 0
\(433\) 3511.21 0.389695 0.194848 0.980834i \(-0.437579\pi\)
0.194848 + 0.980834i \(0.437579\pi\)
\(434\) 0 0
\(435\) 411.645 0.0453721
\(436\) 0 0
\(437\) −1168.18 −0.127875
\(438\) 0 0
\(439\) −7032.17 −0.764526 −0.382263 0.924054i \(-0.624855\pi\)
−0.382263 + 0.924054i \(0.624855\pi\)
\(440\) 0 0
\(441\) −2065.72 −0.223056
\(442\) 0 0
\(443\) −8748.68 −0.938289 −0.469145 0.883121i \(-0.655438\pi\)
−0.469145 + 0.883121i \(0.655438\pi\)
\(444\) 0 0
\(445\) 8380.60 0.892760
\(446\) 0 0
\(447\) 6779.40 0.717348
\(448\) 0 0
\(449\) −805.208 −0.0846327 −0.0423164 0.999104i \(-0.513474\pi\)
−0.0423164 + 0.999104i \(0.513474\pi\)
\(450\) 0 0
\(451\) −2036.39 −0.212616
\(452\) 0 0
\(453\) −7232.51 −0.750139
\(454\) 0 0
\(455\) −9067.75 −0.934291
\(456\) 0 0
\(457\) −10496.9 −1.07445 −0.537226 0.843438i \(-0.680528\pi\)
−0.537226 + 0.843438i \(0.680528\pi\)
\(458\) 0 0
\(459\) 2085.37 0.212063
\(460\) 0 0
\(461\) −3325.68 −0.335992 −0.167996 0.985788i \(-0.553730\pi\)
−0.167996 + 0.985788i \(0.553730\pi\)
\(462\) 0 0
\(463\) 840.876 0.0844035 0.0422018 0.999109i \(-0.486563\pi\)
0.0422018 + 0.999109i \(0.486563\pi\)
\(464\) 0 0
\(465\) 400.848 0.0399761
\(466\) 0 0
\(467\) −8450.82 −0.837382 −0.418691 0.908129i \(-0.637511\pi\)
−0.418691 + 0.908129i \(0.637511\pi\)
\(468\) 0 0
\(469\) −4774.23 −0.470050
\(470\) 0 0
\(471\) 1844.88 0.180483
\(472\) 0 0
\(473\) −8994.89 −0.874388
\(474\) 0 0
\(475\) 464.109 0.0448312
\(476\) 0 0
\(477\) 2426.37 0.232905
\(478\) 0 0
\(479\) 5686.86 0.542462 0.271231 0.962514i \(-0.412569\pi\)
0.271231 + 0.962514i \(0.412569\pi\)
\(480\) 0 0
\(481\) 5781.56 0.548059
\(482\) 0 0
\(483\) 735.021 0.0692435
\(484\) 0 0
\(485\) −17260.7 −1.61602
\(486\) 0 0
\(487\) 13768.2 1.28110 0.640551 0.767916i \(-0.278706\pi\)
0.640551 + 0.767916i \(0.278706\pi\)
\(488\) 0 0
\(489\) −152.438 −0.0140971
\(490\) 0 0
\(491\) −8480.14 −0.779436 −0.389718 0.920934i \(-0.627428\pi\)
−0.389718 + 0.920934i \(0.627428\pi\)
\(492\) 0 0
\(493\) −984.580 −0.0899457
\(494\) 0 0
\(495\) −5072.46 −0.460586
\(496\) 0 0
\(497\) 6696.19 0.604356
\(498\) 0 0
\(499\) −12472.5 −1.11893 −0.559466 0.828853i \(-0.688994\pi\)
−0.559466 + 0.828853i \(0.688994\pi\)
\(500\) 0 0
\(501\) −6002.53 −0.535276
\(502\) 0 0
\(503\) 4676.36 0.414530 0.207265 0.978285i \(-0.433544\pi\)
0.207265 + 0.978285i \(0.433544\pi\)
\(504\) 0 0
\(505\) −13229.3 −1.16574
\(506\) 0 0
\(507\) −12170.9 −1.06613
\(508\) 0 0
\(509\) 5925.58 0.516005 0.258003 0.966144i \(-0.416936\pi\)
0.258003 + 0.966144i \(0.416936\pi\)
\(510\) 0 0
\(511\) −9856.38 −0.853269
\(512\) 0 0
\(513\) 1371.34 0.118023
\(514\) 0 0
\(515\) 2314.95 0.198076
\(516\) 0 0
\(517\) −32178.0 −2.73730
\(518\) 0 0
\(519\) 11390.3 0.963352
\(520\) 0 0
\(521\) 2626.25 0.220841 0.110421 0.993885i \(-0.464780\pi\)
0.110421 + 0.993885i \(0.464780\pi\)
\(522\) 0 0
\(523\) −372.504 −0.0311443 −0.0155721 0.999879i \(-0.504957\pi\)
−0.0155721 + 0.999879i \(0.504957\pi\)
\(524\) 0 0
\(525\) −292.020 −0.0242758
\(526\) 0 0
\(527\) −958.755 −0.0792486
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 4812.91 0.393338
\(532\) 0 0
\(533\) 3075.63 0.249944
\(534\) 0 0
\(535\) −17077.8 −1.38007
\(536\) 0 0
\(537\) −9252.47 −0.743526
\(538\) 0 0
\(539\) −12018.1 −0.960399
\(540\) 0 0
\(541\) 12899.2 1.02510 0.512550 0.858657i \(-0.328701\pi\)
0.512550 + 0.858657i \(0.328701\pi\)
\(542\) 0 0
\(543\) −14199.4 −1.12220
\(544\) 0 0
\(545\) −8850.70 −0.695637
\(546\) 0 0
\(547\) 22144.7 1.73097 0.865485 0.500936i \(-0.167011\pi\)
0.865485 + 0.500936i \(0.167011\pi\)
\(548\) 0 0
\(549\) −7547.43 −0.586733
\(550\) 0 0
\(551\) −647.457 −0.0500592
\(552\) 0 0
\(553\) −10263.4 −0.789233
\(554\) 0 0
\(555\) −2360.80 −0.180559
\(556\) 0 0
\(557\) −10236.7 −0.778716 −0.389358 0.921086i \(-0.627303\pi\)
−0.389358 + 0.921086i \(0.627303\pi\)
\(558\) 0 0
\(559\) 13585.3 1.02790
\(560\) 0 0
\(561\) 12132.4 0.913066
\(562\) 0 0
\(563\) −5750.83 −0.430495 −0.215247 0.976560i \(-0.569056\pi\)
−0.215247 + 0.976560i \(0.569056\pi\)
\(564\) 0 0
\(565\) −212.055 −0.0157898
\(566\) 0 0
\(567\) −862.851 −0.0639088
\(568\) 0 0
\(569\) −8285.10 −0.610421 −0.305210 0.952285i \(-0.598727\pi\)
−0.305210 + 0.952285i \(0.598727\pi\)
\(570\) 0 0
\(571\) 19799.8 1.45113 0.725565 0.688154i \(-0.241579\pi\)
0.725565 + 0.688154i \(0.241579\pi\)
\(572\) 0 0
\(573\) −3879.40 −0.282835
\(574\) 0 0
\(575\) −210.169 −0.0152428
\(576\) 0 0
\(577\) −250.868 −0.0181001 −0.00905006 0.999959i \(-0.502881\pi\)
−0.00905006 + 0.999959i \(0.502881\pi\)
\(578\) 0 0
\(579\) 3515.26 0.252313
\(580\) 0 0
\(581\) 1420.59 0.101439
\(582\) 0 0
\(583\) 14116.3 1.00281
\(584\) 0 0
\(585\) 7661.10 0.541449
\(586\) 0 0
\(587\) 9767.11 0.686766 0.343383 0.939195i \(-0.388427\pi\)
0.343383 + 0.939195i \(0.388427\pi\)
\(588\) 0 0
\(589\) −630.475 −0.0441057
\(590\) 0 0
\(591\) −13677.6 −0.951979
\(592\) 0 0
\(593\) −18853.8 −1.30562 −0.652810 0.757521i \(-0.726410\pi\)
−0.652810 + 0.757521i \(0.726410\pi\)
\(594\) 0 0
\(595\) −8856.08 −0.610192
\(596\) 0 0
\(597\) −1421.16 −0.0974276
\(598\) 0 0
\(599\) 11356.0 0.774615 0.387307 0.921951i \(-0.373405\pi\)
0.387307 + 0.921951i \(0.373405\pi\)
\(600\) 0 0
\(601\) 20359.1 1.38180 0.690902 0.722948i \(-0.257213\pi\)
0.690902 + 0.722948i \(0.257213\pi\)
\(602\) 0 0
\(603\) 4033.62 0.272408
\(604\) 0 0
\(605\) −15184.0 −1.02036
\(606\) 0 0
\(607\) −5975.14 −0.399545 −0.199772 0.979842i \(-0.564020\pi\)
−0.199772 + 0.979842i \(0.564020\pi\)
\(608\) 0 0
\(609\) 407.383 0.0271067
\(610\) 0 0
\(611\) 48599.5 3.21788
\(612\) 0 0
\(613\) 16997.4 1.11993 0.559967 0.828515i \(-0.310814\pi\)
0.559967 + 0.828515i \(0.310814\pi\)
\(614\) 0 0
\(615\) −1255.88 −0.0823447
\(616\) 0 0
\(617\) −13096.0 −0.854497 −0.427249 0.904134i \(-0.640517\pi\)
−0.427249 + 0.904134i \(0.640517\pi\)
\(618\) 0 0
\(619\) −702.058 −0.0455866 −0.0227933 0.999740i \(-0.507256\pi\)
−0.0227933 + 0.999740i \(0.507256\pi\)
\(620\) 0 0
\(621\) −621.000 −0.0401286
\(622\) 0 0
\(623\) 8293.82 0.533362
\(624\) 0 0
\(625\) −14399.3 −0.921554
\(626\) 0 0
\(627\) 7978.23 0.508166
\(628\) 0 0
\(629\) 5646.60 0.357941
\(630\) 0 0
\(631\) −23871.5 −1.50604 −0.753019 0.657999i \(-0.771403\pi\)
−0.753019 + 0.657999i \(0.771403\pi\)
\(632\) 0 0
\(633\) −4270.69 −0.268159
\(634\) 0 0
\(635\) 12305.7 0.769034
\(636\) 0 0
\(637\) 18151.3 1.12901
\(638\) 0 0
\(639\) −5657.43 −0.350242
\(640\) 0 0
\(641\) 24172.6 1.48949 0.744743 0.667351i \(-0.232572\pi\)
0.744743 + 0.667351i \(0.232572\pi\)
\(642\) 0 0
\(643\) −13648.6 −0.837090 −0.418545 0.908196i \(-0.637460\pi\)
−0.418545 + 0.908196i \(0.637460\pi\)
\(644\) 0 0
\(645\) −5547.32 −0.338644
\(646\) 0 0
\(647\) 7009.18 0.425903 0.212952 0.977063i \(-0.431692\pi\)
0.212952 + 0.977063i \(0.431692\pi\)
\(648\) 0 0
\(649\) 28000.8 1.69357
\(650\) 0 0
\(651\) 396.697 0.0238829
\(652\) 0 0
\(653\) 4533.57 0.271688 0.135844 0.990730i \(-0.456625\pi\)
0.135844 + 0.990730i \(0.456625\pi\)
\(654\) 0 0
\(655\) 12428.4 0.741404
\(656\) 0 0
\(657\) 8327.40 0.494494
\(658\) 0 0
\(659\) 7112.62 0.420438 0.210219 0.977654i \(-0.432582\pi\)
0.210219 + 0.977654i \(0.432582\pi\)
\(660\) 0 0
\(661\) 16088.6 0.946709 0.473354 0.880872i \(-0.343043\pi\)
0.473354 + 0.880872i \(0.343043\pi\)
\(662\) 0 0
\(663\) −18324.0 −1.07337
\(664\) 0 0
\(665\) −5823.74 −0.339601
\(666\) 0 0
\(667\) 293.196 0.0170204
\(668\) 0 0
\(669\) 18265.9 1.05561
\(670\) 0 0
\(671\) −43909.9 −2.52626
\(672\) 0 0
\(673\) 22629.7 1.29615 0.648076 0.761576i \(-0.275574\pi\)
0.648076 + 0.761576i \(0.275574\pi\)
\(674\) 0 0
\(675\) 246.720 0.0140685
\(676\) 0 0
\(677\) −15444.0 −0.876749 −0.438375 0.898792i \(-0.644446\pi\)
−0.438375 + 0.898792i \(0.644446\pi\)
\(678\) 0 0
\(679\) −17082.0 −0.965458
\(680\) 0 0
\(681\) −13391.0 −0.753515
\(682\) 0 0
\(683\) −834.894 −0.0467736 −0.0233868 0.999726i \(-0.507445\pi\)
−0.0233868 + 0.999726i \(0.507445\pi\)
\(684\) 0 0
\(685\) 23175.8 1.29270
\(686\) 0 0
\(687\) −3896.62 −0.216398
\(688\) 0 0
\(689\) −21320.3 −1.17886
\(690\) 0 0
\(691\) −4982.99 −0.274330 −0.137165 0.990548i \(-0.543799\pi\)
−0.137165 + 0.990548i \(0.543799\pi\)
\(692\) 0 0
\(693\) −5019.94 −0.275168
\(694\) 0 0
\(695\) −25749.0 −1.40535
\(696\) 0 0
\(697\) 3003.84 0.163240
\(698\) 0 0
\(699\) 3772.23 0.204119
\(700\) 0 0
\(701\) 21916.9 1.18087 0.590436 0.807084i \(-0.298956\pi\)
0.590436 + 0.807084i \(0.298956\pi\)
\(702\) 0 0
\(703\) 3713.19 0.199211
\(704\) 0 0
\(705\) −19844.8 −1.06014
\(706\) 0 0
\(707\) −13092.4 −0.696448
\(708\) 0 0
\(709\) −30858.3 −1.63456 −0.817282 0.576237i \(-0.804520\pi\)
−0.817282 + 0.576237i \(0.804520\pi\)
\(710\) 0 0
\(711\) 8671.31 0.457383
\(712\) 0 0
\(713\) 285.506 0.0149962
\(714\) 0 0
\(715\) 44571.2 2.33128
\(716\) 0 0
\(717\) 10421.9 0.542834
\(718\) 0 0
\(719\) −19500.3 −1.01146 −0.505728 0.862693i \(-0.668776\pi\)
−0.505728 + 0.862693i \(0.668776\pi\)
\(720\) 0 0
\(721\) 2290.98 0.118337
\(722\) 0 0
\(723\) 6422.75 0.330380
\(724\) 0 0
\(725\) −116.485 −0.00596711
\(726\) 0 0
\(727\) −26922.8 −1.37347 −0.686735 0.726908i \(-0.740957\pi\)
−0.686735 + 0.726908i \(0.740957\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 13268.2 0.671328
\(732\) 0 0
\(733\) −22120.5 −1.11465 −0.557326 0.830294i \(-0.688173\pi\)
−0.557326 + 0.830294i \(0.688173\pi\)
\(734\) 0 0
\(735\) −7411.77 −0.371955
\(736\) 0 0
\(737\) 23467.0 1.17289
\(738\) 0 0
\(739\) 27225.8 1.35523 0.677617 0.735415i \(-0.263013\pi\)
0.677617 + 0.735415i \(0.263013\pi\)
\(740\) 0 0
\(741\) −12049.8 −0.597382
\(742\) 0 0
\(743\) 191.429 0.00945201 0.00472600 0.999989i \(-0.498496\pi\)
0.00472600 + 0.999989i \(0.498496\pi\)
\(744\) 0 0
\(745\) 24324.3 1.19621
\(746\) 0 0
\(747\) −1200.22 −0.0587867
\(748\) 0 0
\(749\) −16901.0 −0.824497
\(750\) 0 0
\(751\) 876.709 0.0425986 0.0212993 0.999773i \(-0.493220\pi\)
0.0212993 + 0.999773i \(0.493220\pi\)
\(752\) 0 0
\(753\) −16839.5 −0.814961
\(754\) 0 0
\(755\) −25950.1 −1.25089
\(756\) 0 0
\(757\) −26681.0 −1.28103 −0.640513 0.767948i \(-0.721278\pi\)
−0.640513 + 0.767948i \(0.721278\pi\)
\(758\) 0 0
\(759\) −3612.89 −0.172779
\(760\) 0 0
\(761\) −6947.99 −0.330965 −0.165483 0.986213i \(-0.552918\pi\)
−0.165483 + 0.986213i \(0.552918\pi\)
\(762\) 0 0
\(763\) −8759.06 −0.415595
\(764\) 0 0
\(765\) 7482.27 0.353624
\(766\) 0 0
\(767\) −42290.5 −1.99090
\(768\) 0 0
\(769\) 7189.91 0.337159 0.168579 0.985688i \(-0.446082\pi\)
0.168579 + 0.985688i \(0.446082\pi\)
\(770\) 0 0
\(771\) −3053.95 −0.142653
\(772\) 0 0
\(773\) −27591.1 −1.28381 −0.641904 0.766785i \(-0.721855\pi\)
−0.641904 + 0.766785i \(0.721855\pi\)
\(774\) 0 0
\(775\) −113.430 −0.00525745
\(776\) 0 0
\(777\) −2336.35 −0.107872
\(778\) 0 0
\(779\) 1975.32 0.0908512
\(780\) 0 0
\(781\) −32914.1 −1.50801
\(782\) 0 0
\(783\) −344.187 −0.0157091
\(784\) 0 0
\(785\) 6619.38 0.300963
\(786\) 0 0
\(787\) −10322.4 −0.467541 −0.233770 0.972292i \(-0.575106\pi\)
−0.233770 + 0.972292i \(0.575106\pi\)
\(788\) 0 0
\(789\) −2986.59 −0.134760
\(790\) 0 0
\(791\) −209.859 −0.00943330
\(792\) 0 0
\(793\) 66318.5 2.96978
\(794\) 0 0
\(795\) 8705.76 0.388379
\(796\) 0 0
\(797\) 40205.9 1.78691 0.893455 0.449153i \(-0.148274\pi\)
0.893455 + 0.449153i \(0.148274\pi\)
\(798\) 0 0
\(799\) 47465.0 2.10162
\(800\) 0 0
\(801\) −7007.23 −0.309099
\(802\) 0 0
\(803\) 48447.6 2.12911
\(804\) 0 0
\(805\) 2637.24 0.115466
\(806\) 0 0
\(807\) 10706.8 0.467037
\(808\) 0 0
\(809\) −42375.9 −1.84160 −0.920802 0.390031i \(-0.872464\pi\)
−0.920802 + 0.390031i \(0.872464\pi\)
\(810\) 0 0
\(811\) −7082.68 −0.306667 −0.153333 0.988175i \(-0.549001\pi\)
−0.153333 + 0.988175i \(0.549001\pi\)
\(812\) 0 0
\(813\) −18882.8 −0.814573
\(814\) 0 0
\(815\) −546.945 −0.0235075
\(816\) 0 0
\(817\) 8725.11 0.373627
\(818\) 0 0
\(819\) 7581.78 0.323478
\(820\) 0 0
\(821\) 18154.3 0.771728 0.385864 0.922556i \(-0.373903\pi\)
0.385864 + 0.922556i \(0.373903\pi\)
\(822\) 0 0
\(823\) −10437.1 −0.442058 −0.221029 0.975267i \(-0.570941\pi\)
−0.221029 + 0.975267i \(0.570941\pi\)
\(824\) 0 0
\(825\) 1435.38 0.0605739
\(826\) 0 0
\(827\) 1486.57 0.0625068 0.0312534 0.999511i \(-0.490050\pi\)
0.0312534 + 0.999511i \(0.490050\pi\)
\(828\) 0 0
\(829\) −9987.68 −0.418440 −0.209220 0.977869i \(-0.567092\pi\)
−0.209220 + 0.977869i \(0.567092\pi\)
\(830\) 0 0
\(831\) 6790.95 0.283484
\(832\) 0 0
\(833\) 17727.6 0.737364
\(834\) 0 0
\(835\) −21536.9 −0.892594
\(836\) 0 0
\(837\) −335.159 −0.0138409
\(838\) 0 0
\(839\) 2835.68 0.116685 0.0583424 0.998297i \(-0.481418\pi\)
0.0583424 + 0.998297i \(0.481418\pi\)
\(840\) 0 0
\(841\) −24226.5 −0.993337
\(842\) 0 0
\(843\) 1517.70 0.0620076
\(844\) 0 0
\(845\) −43668.9 −1.77782
\(846\) 0 0
\(847\) −15026.8 −0.609596
\(848\) 0 0
\(849\) −21054.6 −0.851110
\(850\) 0 0
\(851\) −1681.49 −0.0677330
\(852\) 0 0
\(853\) 17544.2 0.704223 0.352111 0.935958i \(-0.385464\pi\)
0.352111 + 0.935958i \(0.385464\pi\)
\(854\) 0 0
\(855\) 4920.32 0.196809
\(856\) 0 0
\(857\) 12827.7 0.511301 0.255651 0.966769i \(-0.417710\pi\)
0.255651 + 0.966769i \(0.417710\pi\)
\(858\) 0 0
\(859\) 35061.5 1.39265 0.696324 0.717728i \(-0.254818\pi\)
0.696324 + 0.717728i \(0.254818\pi\)
\(860\) 0 0
\(861\) −1242.88 −0.0491953
\(862\) 0 0
\(863\) 4222.11 0.166538 0.0832691 0.996527i \(-0.473464\pi\)
0.0832691 + 0.996527i \(0.473464\pi\)
\(864\) 0 0
\(865\) 40868.2 1.60643
\(866\) 0 0
\(867\) −3157.23 −0.123674
\(868\) 0 0
\(869\) 50448.4 1.96933
\(870\) 0 0
\(871\) −35443.0 −1.37881
\(872\) 0 0
\(873\) 14432.1 0.559511
\(874\) 0 0
\(875\) −15380.6 −0.594238
\(876\) 0 0
\(877\) 17535.0 0.675159 0.337579 0.941297i \(-0.390392\pi\)
0.337579 + 0.941297i \(0.390392\pi\)
\(878\) 0 0
\(879\) 28466.5 1.09232
\(880\) 0 0
\(881\) 9116.63 0.348634 0.174317 0.984690i \(-0.444228\pi\)
0.174317 + 0.984690i \(0.444228\pi\)
\(882\) 0 0
\(883\) 41050.4 1.56450 0.782251 0.622963i \(-0.214071\pi\)
0.782251 + 0.622963i \(0.214071\pi\)
\(884\) 0 0
\(885\) 17268.6 0.655907
\(886\) 0 0
\(887\) −22519.5 −0.852461 −0.426230 0.904615i \(-0.640159\pi\)
−0.426230 + 0.904615i \(0.640159\pi\)
\(888\) 0 0
\(889\) 12178.3 0.459444
\(890\) 0 0
\(891\) 4241.22 0.159468
\(892\) 0 0
\(893\) 31212.9 1.16965
\(894\) 0 0
\(895\) −33197.7 −1.23986
\(896\) 0 0
\(897\) 5456.66 0.203113
\(898\) 0 0
\(899\) 158.241 0.00587055
\(900\) 0 0
\(901\) −20822.6 −0.769924
\(902\) 0 0
\(903\) −5489.88 −0.202316
\(904\) 0 0
\(905\) −50947.0 −1.87131
\(906\) 0 0
\(907\) 32037.9 1.17288 0.586439 0.809993i \(-0.300529\pi\)
0.586439 + 0.809993i \(0.300529\pi\)
\(908\) 0 0
\(909\) 11061.4 0.403612
\(910\) 0 0
\(911\) 12881.7 0.468485 0.234242 0.972178i \(-0.424739\pi\)
0.234242 + 0.972178i \(0.424739\pi\)
\(912\) 0 0
\(913\) −6982.69 −0.253114
\(914\) 0 0
\(915\) −27080.0 −0.978402
\(916\) 0 0
\(917\) 12299.8 0.442937
\(918\) 0 0
\(919\) 7311.92 0.262457 0.131229 0.991352i \(-0.458108\pi\)
0.131229 + 0.991352i \(0.458108\pi\)
\(920\) 0 0
\(921\) 13981.7 0.500232
\(922\) 0 0
\(923\) 49711.3 1.77277
\(924\) 0 0
\(925\) 668.047 0.0237462
\(926\) 0 0
\(927\) −1935.59 −0.0685795
\(928\) 0 0
\(929\) 35059.5 1.23817 0.619087 0.785322i \(-0.287503\pi\)
0.619087 + 0.785322i \(0.287503\pi\)
\(930\) 0 0
\(931\) 11657.6 0.410379
\(932\) 0 0
\(933\) 13135.5 0.460919
\(934\) 0 0
\(935\) 43530.8 1.52258
\(936\) 0 0
\(937\) 25471.7 0.888072 0.444036 0.896009i \(-0.353546\pi\)
0.444036 + 0.896009i \(0.353546\pi\)
\(938\) 0 0
\(939\) 13332.5 0.463354
\(940\) 0 0
\(941\) 22426.5 0.776923 0.388461 0.921465i \(-0.373007\pi\)
0.388461 + 0.921465i \(0.373007\pi\)
\(942\) 0 0
\(943\) −894.508 −0.0308899
\(944\) 0 0
\(945\) −3095.89 −0.106571
\(946\) 0 0
\(947\) 36090.9 1.23843 0.619216 0.785220i \(-0.287450\pi\)
0.619216 + 0.785220i \(0.287450\pi\)
\(948\) 0 0
\(949\) −73171.9 −2.50291
\(950\) 0 0
\(951\) −23644.8 −0.806242
\(952\) 0 0
\(953\) −16379.8 −0.556762 −0.278381 0.960471i \(-0.589798\pi\)
−0.278381 + 0.960471i \(0.589798\pi\)
\(954\) 0 0
\(955\) −13919.2 −0.471639
\(956\) 0 0
\(957\) −2002.43 −0.0676378
\(958\) 0 0
\(959\) 22935.8 0.772301
\(960\) 0 0
\(961\) −29636.9 −0.994828
\(962\) 0 0
\(963\) 14279.2 0.477820
\(964\) 0 0
\(965\) 12612.7 0.420742
\(966\) 0 0
\(967\) 22686.2 0.754434 0.377217 0.926125i \(-0.376881\pi\)
0.377217 + 0.926125i \(0.376881\pi\)
\(968\) 0 0
\(969\) −11768.5 −0.390154
\(970\) 0 0
\(971\) −53773.7 −1.77722 −0.888610 0.458663i \(-0.848328\pi\)
−0.888610 + 0.458663i \(0.848328\pi\)
\(972\) 0 0
\(973\) −25482.4 −0.839597
\(974\) 0 0
\(975\) −2167.90 −0.0712086
\(976\) 0 0
\(977\) −20398.6 −0.667972 −0.333986 0.942578i \(-0.608394\pi\)
−0.333986 + 0.942578i \(0.608394\pi\)
\(978\) 0 0
\(979\) −40767.0 −1.33087
\(980\) 0 0
\(981\) 7400.30 0.240850
\(982\) 0 0
\(983\) 12118.6 0.393208 0.196604 0.980483i \(-0.437009\pi\)
0.196604 + 0.980483i \(0.437009\pi\)
\(984\) 0 0
\(985\) −49074.8 −1.58746
\(986\) 0 0
\(987\) −19639.3 −0.633359
\(988\) 0 0
\(989\) −3951.10 −0.127035
\(990\) 0 0
\(991\) 26885.7 0.861809 0.430904 0.902398i \(-0.358195\pi\)
0.430904 + 0.902398i \(0.358195\pi\)
\(992\) 0 0
\(993\) −381.181 −0.0121817
\(994\) 0 0
\(995\) −5099.10 −0.162465
\(996\) 0 0
\(997\) 21022.7 0.667797 0.333899 0.942609i \(-0.391636\pi\)
0.333899 + 0.942609i \(0.391636\pi\)
\(998\) 0 0
\(999\) 1973.93 0.0625148
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1104.4.a.h.1.2 2
4.3 odd 2 69.4.a.a.1.1 2
12.11 even 2 207.4.a.c.1.2 2
20.19 odd 2 1725.4.a.n.1.2 2
92.91 even 2 1587.4.a.b.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.4.a.a.1.1 2 4.3 odd 2
207.4.a.c.1.2 2 12.11 even 2
1104.4.a.h.1.2 2 1.1 even 1 trivial
1587.4.a.b.1.1 2 92.91 even 2
1725.4.a.n.1.2 2 20.19 odd 2