Properties

Label 1152.4.a.bb.1.3
Level $1152$
Weight $4$
Character 1152.1
Self dual yes
Analytic conductor $67.970$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,4,Mod(1,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.9702003266\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.4764.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 12x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.66160\) of defining polynomial
Character \(\chi\) \(=\) 1152.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.64640 q^{5} -4.98287 q^{7} +31.2585 q^{11} -46.5513 q^{13} +29.2243 q^{17} -87.1370 q^{19} -38.6541 q^{23} -50.2397 q^{25} -131.095 q^{29} +137.291 q^{31} -43.0839 q^{35} -51.9281 q^{37} -226.395 q^{41} +16.7260 q^{43} +110.031 q^{47} -318.171 q^{49} -142.198 q^{53} +270.274 q^{55} +547.476 q^{59} -9.17456 q^{61} -402.502 q^{65} +22.1369 q^{67} -1160.82 q^{71} +317.171 q^{73} -155.757 q^{77} -958.078 q^{79} +207.022 q^{83} +252.685 q^{85} -97.3529 q^{89} +231.959 q^{91} -753.421 q^{95} +1213.71 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 10 q^{5} + 6 q^{7} - 20 q^{11} + 46 q^{13} - 68 q^{17} + 68 q^{19} - 56 q^{23} + 53 q^{25} - 46 q^{29} - 226 q^{31} + 332 q^{35} + 66 q^{37} - 236 q^{41} + 212 q^{43} - 760 q^{47} + 327 q^{49} - 702 q^{53}+ \cdots - 1222 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 8.64640 0.773358 0.386679 0.922214i \(-0.373622\pi\)
0.386679 + 0.922214i \(0.373622\pi\)
\(6\) 0 0
\(7\) −4.98287 −0.269050 −0.134525 0.990910i \(-0.542951\pi\)
−0.134525 + 0.990910i \(0.542951\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 31.2585 0.856800 0.428400 0.903589i \(-0.359077\pi\)
0.428400 + 0.903589i \(0.359077\pi\)
\(12\) 0 0
\(13\) −46.5513 −0.993155 −0.496578 0.867992i \(-0.665410\pi\)
−0.496578 + 0.867992i \(0.665410\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 29.2243 0.416937 0.208468 0.978029i \(-0.433152\pi\)
0.208468 + 0.978029i \(0.433152\pi\)
\(18\) 0 0
\(19\) −87.1370 −1.05214 −0.526068 0.850442i \(-0.676334\pi\)
−0.526068 + 0.850442i \(0.676334\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −38.6541 −0.350432 −0.175216 0.984530i \(-0.556062\pi\)
−0.175216 + 0.984530i \(0.556062\pi\)
\(24\) 0 0
\(25\) −50.2397 −0.401918
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −131.095 −0.839439 −0.419719 0.907654i \(-0.637872\pi\)
−0.419719 + 0.907654i \(0.637872\pi\)
\(30\) 0 0
\(31\) 137.291 0.795426 0.397713 0.917510i \(-0.369804\pi\)
0.397713 + 0.917510i \(0.369804\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −43.0839 −0.208072
\(36\) 0 0
\(37\) −51.9281 −0.230728 −0.115364 0.993323i \(-0.536803\pi\)
−0.115364 + 0.993323i \(0.536803\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −226.395 −0.862367 −0.431183 0.902264i \(-0.641904\pi\)
−0.431183 + 0.902264i \(0.641904\pi\)
\(42\) 0 0
\(43\) 16.7260 0.0593184 0.0296592 0.999560i \(-0.490558\pi\)
0.0296592 + 0.999560i \(0.490558\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 110.031 0.341481 0.170741 0.985316i \(-0.445384\pi\)
0.170741 + 0.985316i \(0.445384\pi\)
\(48\) 0 0
\(49\) −318.171 −0.927612
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −142.198 −0.368535 −0.184268 0.982876i \(-0.558991\pi\)
−0.184268 + 0.982876i \(0.558991\pi\)
\(54\) 0 0
\(55\) 270.274 0.662613
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 547.476 1.20806 0.604028 0.796963i \(-0.293561\pi\)
0.604028 + 0.796963i \(0.293561\pi\)
\(60\) 0 0
\(61\) −9.17456 −0.0192571 −0.00962854 0.999954i \(-0.503065\pi\)
−0.00962854 + 0.999954i \(0.503065\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −402.502 −0.768064
\(66\) 0 0
\(67\) 22.1369 0.0403649 0.0201824 0.999796i \(-0.493575\pi\)
0.0201824 + 0.999796i \(0.493575\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1160.82 −1.94034 −0.970170 0.242425i \(-0.922057\pi\)
−0.970170 + 0.242425i \(0.922057\pi\)
\(72\) 0 0
\(73\) 317.171 0.508521 0.254261 0.967136i \(-0.418168\pi\)
0.254261 + 0.967136i \(0.418168\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −155.757 −0.230522
\(78\) 0 0
\(79\) −958.078 −1.36446 −0.682229 0.731138i \(-0.738989\pi\)
−0.682229 + 0.731138i \(0.738989\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 207.022 0.273779 0.136890 0.990586i \(-0.456289\pi\)
0.136890 + 0.990586i \(0.456289\pi\)
\(84\) 0 0
\(85\) 252.685 0.322441
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −97.3529 −0.115948 −0.0579741 0.998318i \(-0.518464\pi\)
−0.0579741 + 0.998318i \(0.518464\pi\)
\(90\) 0 0
\(91\) 231.959 0.267208
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −753.421 −0.813678
\(96\) 0 0
\(97\) 1213.71 1.27045 0.635226 0.772327i \(-0.280907\pi\)
0.635226 + 0.772327i \(0.280907\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1370.20 −1.34990 −0.674949 0.737864i \(-0.735834\pi\)
−0.674949 + 0.737864i \(0.735834\pi\)
\(102\) 0 0
\(103\) 149.956 0.143452 0.0717260 0.997424i \(-0.477149\pi\)
0.0717260 + 0.997424i \(0.477149\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1285.89 1.16179 0.580897 0.813977i \(-0.302702\pi\)
0.580897 + 0.813977i \(0.302702\pi\)
\(108\) 0 0
\(109\) 165.859 0.145747 0.0728736 0.997341i \(-0.476783\pi\)
0.0728736 + 0.997341i \(0.476783\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1870.37 −1.55708 −0.778539 0.627596i \(-0.784039\pi\)
−0.778539 + 0.627596i \(0.784039\pi\)
\(114\) 0 0
\(115\) −334.219 −0.271010
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −145.621 −0.112177
\(120\) 0 0
\(121\) −353.904 −0.265893
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1515.19 −1.08418
\(126\) 0 0
\(127\) −688.949 −0.481373 −0.240686 0.970603i \(-0.577372\pi\)
−0.240686 + 0.970603i \(0.577372\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1536.00 1.02443 0.512217 0.858856i \(-0.328824\pi\)
0.512217 + 0.858856i \(0.328824\pi\)
\(132\) 0 0
\(133\) 434.192 0.283077
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2656.41 −1.65658 −0.828292 0.560296i \(-0.810687\pi\)
−0.828292 + 0.560296i \(0.810687\pi\)
\(138\) 0 0
\(139\) 2581.45 1.57522 0.787611 0.616173i \(-0.211318\pi\)
0.787611 + 0.616173i \(0.211318\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1455.13 −0.850936
\(144\) 0 0
\(145\) −1133.50 −0.649186
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1679.60 −0.923476 −0.461738 0.887016i \(-0.652774\pi\)
−0.461738 + 0.887016i \(0.652774\pi\)
\(150\) 0 0
\(151\) 976.195 0.526104 0.263052 0.964782i \(-0.415271\pi\)
0.263052 + 0.964782i \(0.415271\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1187.07 0.615149
\(156\) 0 0
\(157\) 988.907 0.502697 0.251348 0.967897i \(-0.419126\pi\)
0.251348 + 0.967897i \(0.419126\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 192.608 0.0942837
\(162\) 0 0
\(163\) −2698.42 −1.29667 −0.648334 0.761356i \(-0.724534\pi\)
−0.648334 + 0.761356i \(0.724534\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2629.01 −1.21820 −0.609098 0.793095i \(-0.708469\pi\)
−0.609098 + 0.793095i \(0.708469\pi\)
\(168\) 0 0
\(169\) −29.9723 −0.0136424
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2874.29 −1.26317 −0.631584 0.775307i \(-0.717595\pi\)
−0.631584 + 0.775307i \(0.717595\pi\)
\(174\) 0 0
\(175\) 250.338 0.108136
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3631.19 1.51624 0.758122 0.652113i \(-0.226117\pi\)
0.758122 + 0.652113i \(0.226117\pi\)
\(180\) 0 0
\(181\) −2284.59 −0.938190 −0.469095 0.883148i \(-0.655420\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −448.991 −0.178435
\(186\) 0 0
\(187\) 913.508 0.357232
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4074.14 −1.54343 −0.771713 0.635971i \(-0.780600\pi\)
−0.771713 + 0.635971i \(0.780600\pi\)
\(192\) 0 0
\(193\) −764.596 −0.285165 −0.142582 0.989783i \(-0.545541\pi\)
−0.142582 + 0.989783i \(0.545541\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 146.623 0.0530277 0.0265138 0.999648i \(-0.491559\pi\)
0.0265138 + 0.999648i \(0.491559\pi\)
\(198\) 0 0
\(199\) 4183.78 1.49035 0.745176 0.666868i \(-0.232365\pi\)
0.745176 + 0.666868i \(0.232365\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 653.229 0.225851
\(204\) 0 0
\(205\) −1957.51 −0.666918
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2723.77 −0.901471
\(210\) 0 0
\(211\) −4844.19 −1.58051 −0.790256 0.612777i \(-0.790052\pi\)
−0.790256 + 0.612777i \(0.790052\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 144.620 0.0458743
\(216\) 0 0
\(217\) −684.103 −0.214009
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1360.43 −0.414083
\(222\) 0 0
\(223\) −6057.62 −1.81905 −0.909525 0.415649i \(-0.863554\pi\)
−0.909525 + 0.415649i \(0.863554\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3417.50 0.999239 0.499620 0.866245i \(-0.333473\pi\)
0.499620 + 0.866245i \(0.333473\pi\)
\(228\) 0 0
\(229\) −170.401 −0.0491720 −0.0245860 0.999698i \(-0.507827\pi\)
−0.0245860 + 0.999698i \(0.507827\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6047.01 −1.70023 −0.850114 0.526599i \(-0.823467\pi\)
−0.850114 + 0.526599i \(0.823467\pi\)
\(234\) 0 0
\(235\) 951.370 0.264087
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2623.08 −0.709928 −0.354964 0.934880i \(-0.615507\pi\)
−0.354964 + 0.934880i \(0.615507\pi\)
\(240\) 0 0
\(241\) 2398.24 0.641013 0.320507 0.947246i \(-0.396147\pi\)
0.320507 + 0.947246i \(0.396147\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2751.03 −0.717376
\(246\) 0 0
\(247\) 4056.34 1.04493
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1028.10 −0.258539 −0.129270 0.991609i \(-0.541263\pi\)
−0.129270 + 0.991609i \(0.541263\pi\)
\(252\) 0 0
\(253\) −1208.27 −0.300251
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2966.66 −0.720058 −0.360029 0.932941i \(-0.617233\pi\)
−0.360029 + 0.932941i \(0.617233\pi\)
\(258\) 0 0
\(259\) 258.751 0.0620773
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1571.29 0.368402 0.184201 0.982889i \(-0.441030\pi\)
0.184201 + 0.982889i \(0.441030\pi\)
\(264\) 0 0
\(265\) −1229.50 −0.285010
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −824.889 −0.186968 −0.0934839 0.995621i \(-0.529800\pi\)
−0.0934839 + 0.995621i \(0.529800\pi\)
\(270\) 0 0
\(271\) −4037.24 −0.904962 −0.452481 0.891774i \(-0.649461\pi\)
−0.452481 + 0.891774i \(0.649461\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1570.42 −0.344363
\(276\) 0 0
\(277\) 4162.23 0.902830 0.451415 0.892314i \(-0.350919\pi\)
0.451415 + 0.892314i \(0.350919\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5749.45 1.22058 0.610291 0.792178i \(-0.291053\pi\)
0.610291 + 0.792178i \(0.291053\pi\)
\(282\) 0 0
\(283\) 5401.34 1.13455 0.567273 0.823530i \(-0.307998\pi\)
0.567273 + 0.823530i \(0.307998\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1128.10 0.232019
\(288\) 0 0
\(289\) −4058.94 −0.826164
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4166.93 −0.830835 −0.415417 0.909631i \(-0.636364\pi\)
−0.415417 + 0.909631i \(0.636364\pi\)
\(294\) 0 0
\(295\) 4733.70 0.934259
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1799.40 0.348034
\(300\) 0 0
\(301\) −83.3435 −0.0159596
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −79.3269 −0.0148926
\(306\) 0 0
\(307\) −3302.85 −0.614018 −0.307009 0.951707i \(-0.599328\pi\)
−0.307009 + 0.951707i \(0.599328\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5910.07 −1.07759 −0.538793 0.842438i \(-0.681120\pi\)
−0.538793 + 0.842438i \(0.681120\pi\)
\(312\) 0 0
\(313\) 5164.96 0.932719 0.466359 0.884595i \(-0.345565\pi\)
0.466359 + 0.884595i \(0.345565\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3892.83 0.689726 0.344863 0.938653i \(-0.387925\pi\)
0.344863 + 0.938653i \(0.387925\pi\)
\(318\) 0 0
\(319\) −4097.84 −0.719231
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2546.51 −0.438674
\(324\) 0 0
\(325\) 2338.73 0.399167
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −548.269 −0.0918755
\(330\) 0 0
\(331\) 11839.0 1.96595 0.982973 0.183752i \(-0.0588243\pi\)
0.982973 + 0.183752i \(0.0588243\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 191.404 0.0312165
\(336\) 0 0
\(337\) 4362.10 0.705100 0.352550 0.935793i \(-0.385315\pi\)
0.352550 + 0.935793i \(0.385315\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4291.52 0.681521
\(342\) 0 0
\(343\) 3294.53 0.518623
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5615.61 0.868766 0.434383 0.900728i \(-0.356966\pi\)
0.434383 + 0.900728i \(0.356966\pi\)
\(348\) 0 0
\(349\) 11024.7 1.69094 0.845468 0.534027i \(-0.179322\pi\)
0.845468 + 0.534027i \(0.179322\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5004.03 0.754497 0.377249 0.926112i \(-0.376870\pi\)
0.377249 + 0.926112i \(0.376870\pi\)
\(354\) 0 0
\(355\) −10036.9 −1.50058
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6283.22 0.923720 0.461860 0.886953i \(-0.347182\pi\)
0.461860 + 0.886953i \(0.347182\pi\)
\(360\) 0 0
\(361\) 733.848 0.106991
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2742.39 0.393269
\(366\) 0 0
\(367\) −10006.5 −1.42325 −0.711627 0.702557i \(-0.752042\pi\)
−0.711627 + 0.702557i \(0.752042\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 708.553 0.0991543
\(372\) 0 0
\(373\) −6825.46 −0.947477 −0.473738 0.880666i \(-0.657096\pi\)
−0.473738 + 0.880666i \(0.657096\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6102.65 0.833693
\(378\) 0 0
\(379\) 5566.81 0.754479 0.377240 0.926116i \(-0.376873\pi\)
0.377240 + 0.926116i \(0.376873\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11103.5 1.48137 0.740683 0.671855i \(-0.234502\pi\)
0.740683 + 0.671855i \(0.234502\pi\)
\(384\) 0 0
\(385\) −1346.74 −0.178276
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6661.90 0.868308 0.434154 0.900839i \(-0.357047\pi\)
0.434154 + 0.900839i \(0.357047\pi\)
\(390\) 0 0
\(391\) −1129.64 −0.146108
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8283.93 −1.05521
\(396\) 0 0
\(397\) −10836.2 −1.36990 −0.684951 0.728589i \(-0.740176\pi\)
−0.684951 + 0.728589i \(0.740176\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 636.112 0.0792167 0.0396084 0.999215i \(-0.487389\pi\)
0.0396084 + 0.999215i \(0.487389\pi\)
\(402\) 0 0
\(403\) −6391.08 −0.789981
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1623.20 −0.197688
\(408\) 0 0
\(409\) −600.642 −0.0726157 −0.0363079 0.999341i \(-0.511560\pi\)
−0.0363079 + 0.999341i \(0.511560\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2728.00 −0.325027
\(414\) 0 0
\(415\) 1790.00 0.211729
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11467.2 −1.33701 −0.668506 0.743707i \(-0.733066\pi\)
−0.668506 + 0.743707i \(0.733066\pi\)
\(420\) 0 0
\(421\) 1389.82 0.160892 0.0804462 0.996759i \(-0.474365\pi\)
0.0804462 + 0.996759i \(0.474365\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1468.22 −0.167574
\(426\) 0 0
\(427\) 45.7156 0.00518111
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8972.88 1.00280 0.501402 0.865214i \(-0.332818\pi\)
0.501402 + 0.865214i \(0.332818\pi\)
\(432\) 0 0
\(433\) 766.999 0.0851262 0.0425631 0.999094i \(-0.486448\pi\)
0.0425631 + 0.999094i \(0.486448\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3368.20 0.368703
\(438\) 0 0
\(439\) 9856.76 1.07161 0.535806 0.844341i \(-0.320008\pi\)
0.535806 + 0.844341i \(0.320008\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9206.36 −0.987375 −0.493688 0.869639i \(-0.664351\pi\)
−0.493688 + 0.869639i \(0.664351\pi\)
\(444\) 0 0
\(445\) −841.753 −0.0896694
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 13424.9 1.41105 0.705524 0.708686i \(-0.250712\pi\)
0.705524 + 0.708686i \(0.250712\pi\)
\(450\) 0 0
\(451\) −7076.79 −0.738876
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2005.61 0.206647
\(456\) 0 0
\(457\) −5114.83 −0.523549 −0.261774 0.965129i \(-0.584308\pi\)
−0.261774 + 0.965129i \(0.584308\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5927.65 0.598868 0.299434 0.954117i \(-0.403202\pi\)
0.299434 + 0.954117i \(0.403202\pi\)
\(462\) 0 0
\(463\) −7364.01 −0.739168 −0.369584 0.929197i \(-0.620500\pi\)
−0.369584 + 0.929197i \(0.620500\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17521.4 −1.73618 −0.868089 0.496408i \(-0.834652\pi\)
−0.868089 + 0.496408i \(0.834652\pi\)
\(468\) 0 0
\(469\) −110.305 −0.0108602
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 522.830 0.0508240
\(474\) 0 0
\(475\) 4377.74 0.422872
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3411.89 0.325456 0.162728 0.986671i \(-0.447971\pi\)
0.162728 + 0.986671i \(0.447971\pi\)
\(480\) 0 0
\(481\) 2417.32 0.229149
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10494.2 0.982513
\(486\) 0 0
\(487\) 13943.4 1.29741 0.648704 0.761041i \(-0.275311\pi\)
0.648704 + 0.761041i \(0.275311\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7307.60 0.671665 0.335832 0.941922i \(-0.390982\pi\)
0.335832 + 0.941922i \(0.390982\pi\)
\(492\) 0 0
\(493\) −3831.16 −0.349993
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5784.22 0.522048
\(498\) 0 0
\(499\) 702.653 0.0630362 0.0315181 0.999503i \(-0.489966\pi\)
0.0315181 + 0.999503i \(0.489966\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9917.71 0.879142 0.439571 0.898208i \(-0.355130\pi\)
0.439571 + 0.898208i \(0.355130\pi\)
\(504\) 0 0
\(505\) −11847.3 −1.04395
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10111.7 0.880538 0.440269 0.897866i \(-0.354883\pi\)
0.440269 + 0.897866i \(0.354883\pi\)
\(510\) 0 0
\(511\) −1580.42 −0.136817
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1296.58 0.110940
\(516\) 0 0
\(517\) 3439.40 0.292581
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 16432.4 1.38180 0.690898 0.722952i \(-0.257215\pi\)
0.690898 + 0.722952i \(0.257215\pi\)
\(522\) 0 0
\(523\) −5373.49 −0.449266 −0.224633 0.974443i \(-0.572118\pi\)
−0.224633 + 0.974443i \(0.572118\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4012.23 0.331642
\(528\) 0 0
\(529\) −10672.9 −0.877197
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10539.0 0.856464
\(534\) 0 0
\(535\) 11118.4 0.898483
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −9945.56 −0.794779
\(540\) 0 0
\(541\) 14302.1 1.13659 0.568295 0.822825i \(-0.307603\pi\)
0.568295 + 0.822825i \(0.307603\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1434.09 0.112715
\(546\) 0 0
\(547\) −1109.60 −0.0867335 −0.0433668 0.999059i \(-0.513808\pi\)
−0.0433668 + 0.999059i \(0.513808\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11423.2 0.883204
\(552\) 0 0
\(553\) 4773.98 0.367107
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20183.7 1.53539 0.767695 0.640816i \(-0.221404\pi\)
0.767695 + 0.640816i \(0.221404\pi\)
\(558\) 0 0
\(559\) −778.618 −0.0589124
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3804.02 0.284761 0.142380 0.989812i \(-0.454524\pi\)
0.142380 + 0.989812i \(0.454524\pi\)
\(564\) 0 0
\(565\) −16172.0 −1.20418
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6866.43 0.505898 0.252949 0.967480i \(-0.418600\pi\)
0.252949 + 0.967480i \(0.418600\pi\)
\(570\) 0 0
\(571\) 3856.38 0.282635 0.141317 0.989964i \(-0.454866\pi\)
0.141317 + 0.989964i \(0.454866\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1941.97 0.140845
\(576\) 0 0
\(577\) 7348.06 0.530162 0.265081 0.964226i \(-0.414601\pi\)
0.265081 + 0.964226i \(0.414601\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1031.57 −0.0736602
\(582\) 0 0
\(583\) −4444.90 −0.315761
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21465.6 −1.50934 −0.754670 0.656105i \(-0.772203\pi\)
−0.754670 + 0.656105i \(0.772203\pi\)
\(588\) 0 0
\(589\) −11963.1 −0.836896
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 11309.2 0.783156 0.391578 0.920145i \(-0.371929\pi\)
0.391578 + 0.920145i \(0.371929\pi\)
\(594\) 0 0
\(595\) −1259.10 −0.0867527
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7950.33 0.542307 0.271153 0.962536i \(-0.412595\pi\)
0.271153 + 0.962536i \(0.412595\pi\)
\(600\) 0 0
\(601\) 10642.7 0.722338 0.361169 0.932500i \(-0.382378\pi\)
0.361169 + 0.932500i \(0.382378\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3059.99 −0.205630
\(606\) 0 0
\(607\) −13655.1 −0.913085 −0.456542 0.889702i \(-0.650912\pi\)
−0.456542 + 0.889702i \(0.650912\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5122.08 −0.339144
\(612\) 0 0
\(613\) 8987.49 0.592172 0.296086 0.955161i \(-0.404318\pi\)
0.296086 + 0.955161i \(0.404318\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12086.4 0.788624 0.394312 0.918977i \(-0.370983\pi\)
0.394312 + 0.918977i \(0.370983\pi\)
\(618\) 0 0
\(619\) 6815.67 0.442561 0.221280 0.975210i \(-0.428976\pi\)
0.221280 + 0.975210i \(0.428976\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 485.097 0.0311958
\(624\) 0 0
\(625\) −6821.00 −0.436544
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1517.56 −0.0961990
\(630\) 0 0
\(631\) −24313.6 −1.53393 −0.766966 0.641688i \(-0.778234\pi\)
−0.766966 + 0.641688i \(0.778234\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5956.93 −0.372273
\(636\) 0 0
\(637\) 14811.3 0.921263
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12727.5 −0.784251 −0.392125 0.919912i \(-0.628260\pi\)
−0.392125 + 0.919912i \(0.628260\pi\)
\(642\) 0 0
\(643\) 5323.52 0.326500 0.163250 0.986585i \(-0.447802\pi\)
0.163250 + 0.986585i \(0.447802\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8083.11 0.491159 0.245579 0.969376i \(-0.421022\pi\)
0.245579 + 0.969376i \(0.421022\pi\)
\(648\) 0 0
\(649\) 17113.3 1.03506
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −16001.4 −0.958934 −0.479467 0.877560i \(-0.659170\pi\)
−0.479467 + 0.877560i \(0.659170\pi\)
\(654\) 0 0
\(655\) 13280.9 0.792254
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.23917 0.000487030 0 0.000243515 1.00000i \(-0.499922\pi\)
0.000243515 1.00000i \(0.499922\pi\)
\(660\) 0 0
\(661\) 5401.14 0.317821 0.158911 0.987293i \(-0.449202\pi\)
0.158911 + 0.987293i \(0.449202\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3754.20 0.218920
\(666\) 0 0
\(667\) 5067.36 0.294166
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −286.783 −0.0164995
\(672\) 0 0
\(673\) 15105.6 0.865196 0.432598 0.901587i \(-0.357597\pi\)
0.432598 + 0.901587i \(0.357597\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10985.6 −0.623648 −0.311824 0.950140i \(-0.600940\pi\)
−0.311824 + 0.950140i \(0.600940\pi\)
\(678\) 0 0
\(679\) −6047.77 −0.341814
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −5609.36 −0.314255 −0.157128 0.987578i \(-0.550223\pi\)
−0.157128 + 0.987578i \(0.550223\pi\)
\(684\) 0 0
\(685\) −22968.4 −1.28113
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6619.50 0.366013
\(690\) 0 0
\(691\) −9919.62 −0.546107 −0.273054 0.961999i \(-0.588034\pi\)
−0.273054 + 0.961999i \(0.588034\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22320.3 1.21821
\(696\) 0 0
\(697\) −6616.24 −0.359553
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30526.1 1.64473 0.822365 0.568960i \(-0.192654\pi\)
0.822365 + 0.568960i \(0.192654\pi\)
\(702\) 0 0
\(703\) 4524.86 0.242757
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6827.51 0.363190
\(708\) 0 0
\(709\) 16212.0 0.858750 0.429375 0.903126i \(-0.358734\pi\)
0.429375 + 0.903126i \(0.358734\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −5306.87 −0.278743
\(714\) 0 0
\(715\) −12581.6 −0.658078
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10848.8 0.562715 0.281357 0.959603i \(-0.409215\pi\)
0.281357 + 0.959603i \(0.409215\pi\)
\(720\) 0 0
\(721\) −747.209 −0.0385957
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6586.18 0.337385
\(726\) 0 0
\(727\) −9476.80 −0.483460 −0.241730 0.970344i \(-0.577715\pi\)
−0.241730 + 0.970344i \(0.577715\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 488.805 0.0247320
\(732\) 0 0
\(733\) 30420.7 1.53290 0.766449 0.642305i \(-0.222022\pi\)
0.766449 + 0.642305i \(0.222022\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 691.966 0.0345846
\(738\) 0 0
\(739\) 21172.7 1.05392 0.526961 0.849889i \(-0.323331\pi\)
0.526961 + 0.849889i \(0.323331\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −35683.8 −1.76193 −0.880964 0.473183i \(-0.843105\pi\)
−0.880964 + 0.473183i \(0.843105\pi\)
\(744\) 0 0
\(745\) −14522.5 −0.714177
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6407.44 −0.312580
\(750\) 0 0
\(751\) 22059.5 1.07186 0.535928 0.844264i \(-0.319962\pi\)
0.535928 + 0.844264i \(0.319962\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8440.58 0.406866
\(756\) 0 0
\(757\) 184.774 0.00887149 0.00443575 0.999990i \(-0.498588\pi\)
0.00443575 + 0.999990i \(0.498588\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −33873.0 −1.61353 −0.806764 0.590873i \(-0.798783\pi\)
−0.806764 + 0.590873i \(0.798783\pi\)
\(762\) 0 0
\(763\) −826.456 −0.0392132
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −25485.7 −1.19979
\(768\) 0 0
\(769\) −2115.36 −0.0991961 −0.0495980 0.998769i \(-0.515794\pi\)
−0.0495980 + 0.998769i \(0.515794\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 29141.3 1.35594 0.677969 0.735090i \(-0.262860\pi\)
0.677969 + 0.735090i \(0.262860\pi\)
\(774\) 0 0
\(775\) −6897.47 −0.319696
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 19727.4 0.907327
\(780\) 0 0
\(781\) −36285.6 −1.66248
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8550.49 0.388764
\(786\) 0 0
\(787\) 36766.6 1.66530 0.832648 0.553803i \(-0.186824\pi\)
0.832648 + 0.553803i \(0.186824\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9319.82 0.418931
\(792\) 0 0
\(793\) 427.088 0.0191253
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −37670.1 −1.67421 −0.837104 0.547044i \(-0.815753\pi\)
−0.837104 + 0.547044i \(0.815753\pi\)
\(798\) 0 0
\(799\) 3215.57 0.142376
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9914.30 0.435701
\(804\) 0 0
\(805\) 1665.37 0.0729150
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 28007.6 1.21718 0.608588 0.793487i \(-0.291736\pi\)
0.608588 + 0.793487i \(0.291736\pi\)
\(810\) 0 0
\(811\) −9076.18 −0.392981 −0.196491 0.980506i \(-0.562955\pi\)
−0.196491 + 0.980506i \(0.562955\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −23331.7 −1.00279
\(816\) 0 0
\(817\) −1457.45 −0.0624110
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −20371.6 −0.865985 −0.432992 0.901398i \(-0.642542\pi\)
−0.432992 + 0.901398i \(0.642542\pi\)
\(822\) 0 0
\(823\) 10244.3 0.433892 0.216946 0.976184i \(-0.430390\pi\)
0.216946 + 0.976184i \(0.430390\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −402.047 −0.0169051 −0.00845257 0.999964i \(-0.502691\pi\)
−0.00845257 + 0.999964i \(0.502691\pi\)
\(828\) 0 0
\(829\) 34019.0 1.42525 0.712623 0.701548i \(-0.247507\pi\)
0.712623 + 0.701548i \(0.247507\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −9298.32 −0.386756
\(834\) 0 0
\(835\) −22731.5 −0.942102
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −13859.3 −0.570293 −0.285146 0.958484i \(-0.592042\pi\)
−0.285146 + 0.958484i \(0.592042\pi\)
\(840\) 0 0
\(841\) −7203.11 −0.295343
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −259.153 −0.0105504
\(846\) 0 0
\(847\) 1763.46 0.0715384
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2007.24 0.0808545
\(852\) 0 0
\(853\) −32174.9 −1.29150 −0.645748 0.763550i \(-0.723454\pi\)
−0.645748 + 0.763550i \(0.723454\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −37549.3 −1.49669 −0.748344 0.663311i \(-0.769151\pi\)
−0.748344 + 0.663311i \(0.769151\pi\)
\(858\) 0 0
\(859\) −42689.8 −1.69564 −0.847821 0.530283i \(-0.822086\pi\)
−0.847821 + 0.530283i \(0.822086\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2022.74 0.0797856 0.0398928 0.999204i \(-0.487298\pi\)
0.0398928 + 0.999204i \(0.487298\pi\)
\(864\) 0 0
\(865\) −24852.2 −0.976881
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −29948.1 −1.16907
\(870\) 0 0
\(871\) −1030.50 −0.0400886
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 7550.01 0.291699
\(876\) 0 0
\(877\) −27663.2 −1.06513 −0.532565 0.846389i \(-0.678772\pi\)
−0.532565 + 0.846389i \(0.678772\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −17663.5 −0.675482 −0.337741 0.941239i \(-0.609663\pi\)
−0.337741 + 0.941239i \(0.609663\pi\)
\(882\) 0 0
\(883\) 23255.2 0.886298 0.443149 0.896448i \(-0.353861\pi\)
0.443149 + 0.896448i \(0.353861\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −32189.4 −1.21851 −0.609253 0.792976i \(-0.708530\pi\)
−0.609253 + 0.792976i \(0.708530\pi\)
\(888\) 0 0
\(889\) 3432.94 0.129513
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9587.74 −0.359285
\(894\) 0 0
\(895\) 31396.7 1.17260
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −17998.2 −0.667711
\(900\) 0 0
\(901\) −4155.63 −0.153656
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −19753.5 −0.725556
\(906\) 0 0
\(907\) −39926.1 −1.46166 −0.730829 0.682561i \(-0.760866\pi\)
−0.730829 + 0.682561i \(0.760866\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2444.86 0.0889152 0.0444576 0.999011i \(-0.485844\pi\)
0.0444576 + 0.999011i \(0.485844\pi\)
\(912\) 0 0
\(913\) 6471.22 0.234574
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7653.69 −0.275624
\(918\) 0 0
\(919\) −33333.1 −1.19647 −0.598236 0.801320i \(-0.704132\pi\)
−0.598236 + 0.801320i \(0.704132\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 54037.8 1.92706
\(924\) 0 0
\(925\) 2608.86 0.0927337
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28429.6 −1.00403 −0.502016 0.864858i \(-0.667408\pi\)
−0.502016 + 0.864858i \(0.667408\pi\)
\(930\) 0 0
\(931\) 27724.5 0.975974
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7898.56 0.276268
\(936\) 0 0
\(937\) 17367.5 0.605518 0.302759 0.953067i \(-0.402092\pi\)
0.302759 + 0.953067i \(0.402092\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −29272.3 −1.01408 −0.507040 0.861922i \(-0.669260\pi\)
−0.507040 + 0.861922i \(0.669260\pi\)
\(942\) 0 0
\(943\) 8751.12 0.302201
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12340.7 0.423461 0.211731 0.977328i \(-0.432090\pi\)
0.211731 + 0.977328i \(0.432090\pi\)
\(948\) 0 0
\(949\) −14764.7 −0.505041
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5581.81 −0.189730 −0.0948650 0.995490i \(-0.530242\pi\)
−0.0948650 + 0.995490i \(0.530242\pi\)
\(954\) 0 0
\(955\) −35226.6 −1.19362
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 13236.5 0.445703
\(960\) 0 0
\(961\) −10942.2 −0.367298
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6611.00 −0.220534
\(966\) 0 0
\(967\) −34140.3 −1.13534 −0.567672 0.823255i \(-0.692156\pi\)
−0.567672 + 0.823255i \(0.692156\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 3902.45 0.128976 0.0644880 0.997918i \(-0.479459\pi\)
0.0644880 + 0.997918i \(0.479459\pi\)
\(972\) 0 0
\(973\) −12863.0 −0.423813
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −39016.9 −1.27765 −0.638824 0.769353i \(-0.720579\pi\)
−0.638824 + 0.769353i \(0.720579\pi\)
\(978\) 0 0
\(979\) −3043.11 −0.0993445
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −48792.0 −1.58314 −0.791569 0.611080i \(-0.790735\pi\)
−0.791569 + 0.611080i \(0.790735\pi\)
\(984\) 0 0
\(985\) 1267.76 0.0410093
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −646.529 −0.0207871
\(990\) 0 0
\(991\) 44042.7 1.41177 0.705885 0.708327i \(-0.250550\pi\)
0.705885 + 0.708327i \(0.250550\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 36174.6 1.15258
\(996\) 0 0
\(997\) 25930.8 0.823706 0.411853 0.911250i \(-0.364882\pi\)
0.411853 + 0.911250i \(0.364882\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.a.bb.1.3 yes 3
3.2 odd 2 1152.4.a.bf.1.1 yes 3
4.3 odd 2 1152.4.a.z.1.3 yes 3
8.3 odd 2 1152.4.a.bc.1.1 yes 3
8.5 even 2 1152.4.a.be.1.1 yes 3
12.11 even 2 1152.4.a.bd.1.1 yes 3
24.5 odd 2 1152.4.a.ba.1.3 yes 3
24.11 even 2 1152.4.a.y.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1152.4.a.y.1.3 3 24.11 even 2
1152.4.a.z.1.3 yes 3 4.3 odd 2
1152.4.a.ba.1.3 yes 3 24.5 odd 2
1152.4.a.bb.1.3 yes 3 1.1 even 1 trivial
1152.4.a.bc.1.1 yes 3 8.3 odd 2
1152.4.a.bd.1.1 yes 3 12.11 even 2
1152.4.a.be.1.1 yes 3 8.5 even 2
1152.4.a.bf.1.1 yes 3 3.2 odd 2