Properties

Label 1160.4.a.d.1.2
Level $1160$
Weight $4$
Character 1160.1
Self dual yes
Analytic conductor $68.442$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,4,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.4422156067\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 153x^{7} + 229x^{6} + 7393x^{5} - 8331x^{4} - 115371x^{3} + 125775x^{2} + 306882x + 29241 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-6.79757\) of defining polynomial
Character \(\chi\) \(=\) 1160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.79757 q^{3} +5.00000 q^{5} -15.5907 q^{7} +33.8021 q^{9} +0.904566 q^{11} +44.0785 q^{13} -38.9879 q^{15} -24.7763 q^{17} -144.622 q^{19} +121.569 q^{21} +20.9321 q^{23} +25.0000 q^{25} -53.0402 q^{27} +29.0000 q^{29} +86.8967 q^{31} -7.05342 q^{33} -77.9534 q^{35} +258.033 q^{37} -343.705 q^{39} +261.855 q^{41} +167.197 q^{43} +169.011 q^{45} -108.300 q^{47} -99.9307 q^{49} +193.195 q^{51} -59.0204 q^{53} +4.52283 q^{55} +1127.70 q^{57} +594.350 q^{59} -265.219 q^{61} -526.998 q^{63} +220.392 q^{65} +155.916 q^{67} -163.220 q^{69} -485.415 q^{71} +654.740 q^{73} -194.939 q^{75} -14.1028 q^{77} +10.4630 q^{79} -499.073 q^{81} -151.760 q^{83} -123.882 q^{85} -226.130 q^{87} +42.2972 q^{89} -687.214 q^{91} -677.583 q^{93} -723.111 q^{95} -120.546 q^{97} +30.5763 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 7 q^{3} + 45 q^{5} - 39 q^{7} + 72 q^{9} - 108 q^{11} - 19 q^{13} - 35 q^{15} + 91 q^{17} - 36 q^{19} - 200 q^{21} - 209 q^{23} + 225 q^{25} - 316 q^{27} + 261 q^{29} - 599 q^{31} - 192 q^{33} - 195 q^{35}+ \cdots - 2946 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.79757 −1.50064 −0.750322 0.661073i \(-0.770101\pi\)
−0.750322 + 0.661073i \(0.770101\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −15.5907 −0.841818 −0.420909 0.907103i \(-0.638289\pi\)
−0.420909 + 0.907103i \(0.638289\pi\)
\(8\) 0 0
\(9\) 33.8021 1.25193
\(10\) 0 0
\(11\) 0.904566 0.0247943 0.0123971 0.999923i \(-0.496054\pi\)
0.0123971 + 0.999923i \(0.496054\pi\)
\(12\) 0 0
\(13\) 44.0785 0.940398 0.470199 0.882560i \(-0.344182\pi\)
0.470199 + 0.882560i \(0.344182\pi\)
\(14\) 0 0
\(15\) −38.9879 −0.671108
\(16\) 0 0
\(17\) −24.7763 −0.353479 −0.176739 0.984258i \(-0.556555\pi\)
−0.176739 + 0.984258i \(0.556555\pi\)
\(18\) 0 0
\(19\) −144.622 −1.74624 −0.873122 0.487503i \(-0.837908\pi\)
−0.873122 + 0.487503i \(0.837908\pi\)
\(20\) 0 0
\(21\) 121.569 1.26327
\(22\) 0 0
\(23\) 20.9321 0.189767 0.0948837 0.995488i \(-0.469752\pi\)
0.0948837 + 0.995488i \(0.469752\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −53.0402 −0.378059
\(28\) 0 0
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) 86.8967 0.503455 0.251727 0.967798i \(-0.419001\pi\)
0.251727 + 0.967798i \(0.419001\pi\)
\(32\) 0 0
\(33\) −7.05342 −0.0372074
\(34\) 0 0
\(35\) −77.9534 −0.376472
\(36\) 0 0
\(37\) 258.033 1.14650 0.573248 0.819382i \(-0.305683\pi\)
0.573248 + 0.819382i \(0.305683\pi\)
\(38\) 0 0
\(39\) −343.705 −1.41120
\(40\) 0 0
\(41\) 261.855 0.997436 0.498718 0.866764i \(-0.333804\pi\)
0.498718 + 0.866764i \(0.333804\pi\)
\(42\) 0 0
\(43\) 167.197 0.592959 0.296480 0.955039i \(-0.404187\pi\)
0.296480 + 0.955039i \(0.404187\pi\)
\(44\) 0 0
\(45\) 169.011 0.559881
\(46\) 0 0
\(47\) −108.300 −0.336111 −0.168055 0.985778i \(-0.553749\pi\)
−0.168055 + 0.985778i \(0.553749\pi\)
\(48\) 0 0
\(49\) −99.9307 −0.291343
\(50\) 0 0
\(51\) 193.195 0.530446
\(52\) 0 0
\(53\) −59.0204 −0.152964 −0.0764819 0.997071i \(-0.524369\pi\)
−0.0764819 + 0.997071i \(0.524369\pi\)
\(54\) 0 0
\(55\) 4.52283 0.0110883
\(56\) 0 0
\(57\) 1127.70 2.62049
\(58\) 0 0
\(59\) 594.350 1.31149 0.655744 0.754984i \(-0.272355\pi\)
0.655744 + 0.754984i \(0.272355\pi\)
\(60\) 0 0
\(61\) −265.219 −0.556686 −0.278343 0.960482i \(-0.589785\pi\)
−0.278343 + 0.960482i \(0.589785\pi\)
\(62\) 0 0
\(63\) −526.998 −1.05390
\(64\) 0 0
\(65\) 220.392 0.420559
\(66\) 0 0
\(67\) 155.916 0.284301 0.142150 0.989845i \(-0.454598\pi\)
0.142150 + 0.989845i \(0.454598\pi\)
\(68\) 0 0
\(69\) −163.220 −0.284773
\(70\) 0 0
\(71\) −485.415 −0.811382 −0.405691 0.914010i \(-0.632969\pi\)
−0.405691 + 0.914010i \(0.632969\pi\)
\(72\) 0 0
\(73\) 654.740 1.04975 0.524874 0.851180i \(-0.324113\pi\)
0.524874 + 0.851180i \(0.324113\pi\)
\(74\) 0 0
\(75\) −194.939 −0.300129
\(76\) 0 0
\(77\) −14.1028 −0.0208723
\(78\) 0 0
\(79\) 10.4630 0.0149011 0.00745053 0.999972i \(-0.497628\pi\)
0.00745053 + 0.999972i \(0.497628\pi\)
\(80\) 0 0
\(81\) −499.073 −0.684600
\(82\) 0 0
\(83\) −151.760 −0.200697 −0.100348 0.994952i \(-0.531996\pi\)
−0.100348 + 0.994952i \(0.531996\pi\)
\(84\) 0 0
\(85\) −123.882 −0.158080
\(86\) 0 0
\(87\) −226.130 −0.278663
\(88\) 0 0
\(89\) 42.2972 0.0503763 0.0251882 0.999683i \(-0.491982\pi\)
0.0251882 + 0.999683i \(0.491982\pi\)
\(90\) 0 0
\(91\) −687.214 −0.791643
\(92\) 0 0
\(93\) −677.583 −0.755506
\(94\) 0 0
\(95\) −723.111 −0.780944
\(96\) 0 0
\(97\) −120.546 −0.126182 −0.0630908 0.998008i \(-0.520096\pi\)
−0.0630908 + 0.998008i \(0.520096\pi\)
\(98\) 0 0
\(99\) 30.5763 0.0310407
\(100\) 0 0
\(101\) 170.001 0.167482 0.0837412 0.996488i \(-0.473313\pi\)
0.0837412 + 0.996488i \(0.473313\pi\)
\(102\) 0 0
\(103\) 541.303 0.517827 0.258913 0.965901i \(-0.416636\pi\)
0.258913 + 0.965901i \(0.416636\pi\)
\(104\) 0 0
\(105\) 607.847 0.564951
\(106\) 0 0
\(107\) −1603.37 −1.44863 −0.724317 0.689467i \(-0.757845\pi\)
−0.724317 + 0.689467i \(0.757845\pi\)
\(108\) 0 0
\(109\) −693.395 −0.609313 −0.304657 0.952462i \(-0.598542\pi\)
−0.304657 + 0.952462i \(0.598542\pi\)
\(110\) 0 0
\(111\) −2012.03 −1.72048
\(112\) 0 0
\(113\) 272.427 0.226794 0.113397 0.993550i \(-0.463827\pi\)
0.113397 + 0.993550i \(0.463827\pi\)
\(114\) 0 0
\(115\) 104.661 0.0848666
\(116\) 0 0
\(117\) 1489.95 1.17731
\(118\) 0 0
\(119\) 386.280 0.297565
\(120\) 0 0
\(121\) −1330.18 −0.999385
\(122\) 0 0
\(123\) −2041.83 −1.49680
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 990.503 0.692070 0.346035 0.938222i \(-0.387528\pi\)
0.346035 + 0.938222i \(0.387528\pi\)
\(128\) 0 0
\(129\) −1303.73 −0.889820
\(130\) 0 0
\(131\) −1461.36 −0.974652 −0.487326 0.873220i \(-0.662028\pi\)
−0.487326 + 0.873220i \(0.662028\pi\)
\(132\) 0 0
\(133\) 2254.76 1.47002
\(134\) 0 0
\(135\) −265.201 −0.169073
\(136\) 0 0
\(137\) 537.074 0.334929 0.167465 0.985878i \(-0.446442\pi\)
0.167465 + 0.985878i \(0.446442\pi\)
\(138\) 0 0
\(139\) −1442.25 −0.880071 −0.440035 0.897980i \(-0.645034\pi\)
−0.440035 + 0.897980i \(0.645034\pi\)
\(140\) 0 0
\(141\) 844.478 0.504382
\(142\) 0 0
\(143\) 39.8719 0.0233165
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 0 0
\(147\) 779.217 0.437202
\(148\) 0 0
\(149\) −761.634 −0.418761 −0.209381 0.977834i \(-0.567145\pi\)
−0.209381 + 0.977834i \(0.567145\pi\)
\(150\) 0 0
\(151\) −307.916 −0.165946 −0.0829729 0.996552i \(-0.526441\pi\)
−0.0829729 + 0.996552i \(0.526441\pi\)
\(152\) 0 0
\(153\) −837.492 −0.442531
\(154\) 0 0
\(155\) 434.483 0.225152
\(156\) 0 0
\(157\) −1031.05 −0.524120 −0.262060 0.965052i \(-0.584402\pi\)
−0.262060 + 0.965052i \(0.584402\pi\)
\(158\) 0 0
\(159\) 460.216 0.229544
\(160\) 0 0
\(161\) −326.346 −0.159750
\(162\) 0 0
\(163\) 2486.39 1.19478 0.597389 0.801951i \(-0.296205\pi\)
0.597389 + 0.801951i \(0.296205\pi\)
\(164\) 0 0
\(165\) −35.2671 −0.0166396
\(166\) 0 0
\(167\) −1662.88 −0.770524 −0.385262 0.922807i \(-0.625889\pi\)
−0.385262 + 0.922807i \(0.625889\pi\)
\(168\) 0 0
\(169\) −254.087 −0.115652
\(170\) 0 0
\(171\) −4888.54 −2.18618
\(172\) 0 0
\(173\) −1627.97 −0.715446 −0.357723 0.933828i \(-0.616447\pi\)
−0.357723 + 0.933828i \(0.616447\pi\)
\(174\) 0 0
\(175\) −389.767 −0.168364
\(176\) 0 0
\(177\) −4634.49 −1.96807
\(178\) 0 0
\(179\) −1329.47 −0.555134 −0.277567 0.960706i \(-0.589528\pi\)
−0.277567 + 0.960706i \(0.589528\pi\)
\(180\) 0 0
\(181\) −2434.68 −0.999826 −0.499913 0.866076i \(-0.666635\pi\)
−0.499913 + 0.866076i \(0.666635\pi\)
\(182\) 0 0
\(183\) 2068.07 0.835388
\(184\) 0 0
\(185\) 1290.17 0.512729
\(186\) 0 0
\(187\) −22.4118 −0.00876425
\(188\) 0 0
\(189\) 826.933 0.318257
\(190\) 0 0
\(191\) −4951.01 −1.87561 −0.937807 0.347156i \(-0.887148\pi\)
−0.937807 + 0.347156i \(0.887148\pi\)
\(192\) 0 0
\(193\) −1492.91 −0.556799 −0.278400 0.960465i \(-0.589804\pi\)
−0.278400 + 0.960465i \(0.589804\pi\)
\(194\) 0 0
\(195\) −1718.53 −0.631109
\(196\) 0 0
\(197\) 178.455 0.0645399 0.0322700 0.999479i \(-0.489726\pi\)
0.0322700 + 0.999479i \(0.489726\pi\)
\(198\) 0 0
\(199\) −2665.50 −0.949507 −0.474754 0.880119i \(-0.657463\pi\)
−0.474754 + 0.880119i \(0.657463\pi\)
\(200\) 0 0
\(201\) −1215.76 −0.426634
\(202\) 0 0
\(203\) −452.130 −0.156322
\(204\) 0 0
\(205\) 1309.27 0.446067
\(206\) 0 0
\(207\) 707.551 0.237576
\(208\) 0 0
\(209\) −130.820 −0.0432968
\(210\) 0 0
\(211\) −1857.37 −0.606002 −0.303001 0.952990i \(-0.597989\pi\)
−0.303001 + 0.952990i \(0.597989\pi\)
\(212\) 0 0
\(213\) 3785.06 1.21760
\(214\) 0 0
\(215\) 835.983 0.265179
\(216\) 0 0
\(217\) −1354.78 −0.423817
\(218\) 0 0
\(219\) −5105.39 −1.57530
\(220\) 0 0
\(221\) −1092.10 −0.332411
\(222\) 0 0
\(223\) −55.6672 −0.0167164 −0.00835818 0.999965i \(-0.502661\pi\)
−0.00835818 + 0.999965i \(0.502661\pi\)
\(224\) 0 0
\(225\) 845.054 0.250386
\(226\) 0 0
\(227\) −5179.30 −1.51437 −0.757185 0.653200i \(-0.773426\pi\)
−0.757185 + 0.653200i \(0.773426\pi\)
\(228\) 0 0
\(229\) −4430.18 −1.27840 −0.639202 0.769039i \(-0.720735\pi\)
−0.639202 + 0.769039i \(0.720735\pi\)
\(230\) 0 0
\(231\) 109.968 0.0313218
\(232\) 0 0
\(233\) 2518.58 0.708144 0.354072 0.935218i \(-0.384797\pi\)
0.354072 + 0.935218i \(0.384797\pi\)
\(234\) 0 0
\(235\) −541.501 −0.150313
\(236\) 0 0
\(237\) −81.5863 −0.0223612
\(238\) 0 0
\(239\) −4559.50 −1.23401 −0.617007 0.786957i \(-0.711655\pi\)
−0.617007 + 0.786957i \(0.711655\pi\)
\(240\) 0 0
\(241\) 811.460 0.216891 0.108445 0.994102i \(-0.465413\pi\)
0.108445 + 0.994102i \(0.465413\pi\)
\(242\) 0 0
\(243\) 5323.64 1.40540
\(244\) 0 0
\(245\) −499.653 −0.130293
\(246\) 0 0
\(247\) −6374.73 −1.64216
\(248\) 0 0
\(249\) 1183.36 0.301174
\(250\) 0 0
\(251\) 822.590 0.206858 0.103429 0.994637i \(-0.467019\pi\)
0.103429 + 0.994637i \(0.467019\pi\)
\(252\) 0 0
\(253\) 18.9345 0.00470515
\(254\) 0 0
\(255\) 965.975 0.237222
\(256\) 0 0
\(257\) 2667.62 0.647477 0.323739 0.946147i \(-0.395060\pi\)
0.323739 + 0.946147i \(0.395060\pi\)
\(258\) 0 0
\(259\) −4022.91 −0.965141
\(260\) 0 0
\(261\) 980.262 0.232478
\(262\) 0 0
\(263\) −363.692 −0.0852707 −0.0426353 0.999091i \(-0.513575\pi\)
−0.0426353 + 0.999091i \(0.513575\pi\)
\(264\) 0 0
\(265\) −295.102 −0.0684075
\(266\) 0 0
\(267\) −329.816 −0.0755969
\(268\) 0 0
\(269\) 121.990 0.0276499 0.0138250 0.999904i \(-0.495599\pi\)
0.0138250 + 0.999904i \(0.495599\pi\)
\(270\) 0 0
\(271\) 7132.79 1.59884 0.799420 0.600772i \(-0.205140\pi\)
0.799420 + 0.600772i \(0.205140\pi\)
\(272\) 0 0
\(273\) 5358.60 1.18797
\(274\) 0 0
\(275\) 22.6142 0.00495885
\(276\) 0 0
\(277\) −4082.12 −0.885453 −0.442727 0.896657i \(-0.645989\pi\)
−0.442727 + 0.896657i \(0.645989\pi\)
\(278\) 0 0
\(279\) 2937.29 0.630291
\(280\) 0 0
\(281\) 4713.45 1.00064 0.500322 0.865839i \(-0.333215\pi\)
0.500322 + 0.865839i \(0.333215\pi\)
\(282\) 0 0
\(283\) 4088.40 0.858763 0.429382 0.903123i \(-0.358732\pi\)
0.429382 + 0.903123i \(0.358732\pi\)
\(284\) 0 0
\(285\) 5638.51 1.17192
\(286\) 0 0
\(287\) −4082.50 −0.839659
\(288\) 0 0
\(289\) −4299.13 −0.875053
\(290\) 0 0
\(291\) 939.969 0.189354
\(292\) 0 0
\(293\) −3699.22 −0.737580 −0.368790 0.929513i \(-0.620228\pi\)
−0.368790 + 0.929513i \(0.620228\pi\)
\(294\) 0 0
\(295\) 2971.75 0.586515
\(296\) 0 0
\(297\) −47.9784 −0.00937369
\(298\) 0 0
\(299\) 922.657 0.178457
\(300\) 0 0
\(301\) −2606.71 −0.499163
\(302\) 0 0
\(303\) −1325.59 −0.251331
\(304\) 0 0
\(305\) −1326.10 −0.248958
\(306\) 0 0
\(307\) 1956.32 0.363691 0.181845 0.983327i \(-0.441793\pi\)
0.181845 + 0.983327i \(0.441793\pi\)
\(308\) 0 0
\(309\) −4220.85 −0.777073
\(310\) 0 0
\(311\) 1605.41 0.292715 0.146358 0.989232i \(-0.453245\pi\)
0.146358 + 0.989232i \(0.453245\pi\)
\(312\) 0 0
\(313\) −1691.08 −0.305385 −0.152693 0.988274i \(-0.548794\pi\)
−0.152693 + 0.988274i \(0.548794\pi\)
\(314\) 0 0
\(315\) −2634.99 −0.471317
\(316\) 0 0
\(317\) −7790.78 −1.38036 −0.690180 0.723638i \(-0.742468\pi\)
−0.690180 + 0.723638i \(0.742468\pi\)
\(318\) 0 0
\(319\) 26.2324 0.00460418
\(320\) 0 0
\(321\) 12502.4 2.17388
\(322\) 0 0
\(323\) 3583.21 0.617260
\(324\) 0 0
\(325\) 1101.96 0.188080
\(326\) 0 0
\(327\) 5406.80 0.914362
\(328\) 0 0
\(329\) 1688.47 0.282944
\(330\) 0 0
\(331\) −7105.62 −1.17994 −0.589970 0.807425i \(-0.700861\pi\)
−0.589970 + 0.807425i \(0.700861\pi\)
\(332\) 0 0
\(333\) 8722.07 1.43534
\(334\) 0 0
\(335\) 779.579 0.127143
\(336\) 0 0
\(337\) −3455.62 −0.558574 −0.279287 0.960208i \(-0.590098\pi\)
−0.279287 + 0.960208i \(0.590098\pi\)
\(338\) 0 0
\(339\) −2124.27 −0.340337
\(340\) 0 0
\(341\) 78.6038 0.0124828
\(342\) 0 0
\(343\) 6905.59 1.08708
\(344\) 0 0
\(345\) −816.099 −0.127354
\(346\) 0 0
\(347\) −5644.82 −0.873284 −0.436642 0.899635i \(-0.643832\pi\)
−0.436642 + 0.899635i \(0.643832\pi\)
\(348\) 0 0
\(349\) 2584.08 0.396340 0.198170 0.980168i \(-0.436500\pi\)
0.198170 + 0.980168i \(0.436500\pi\)
\(350\) 0 0
\(351\) −2337.93 −0.355526
\(352\) 0 0
\(353\) 1766.21 0.266305 0.133153 0.991096i \(-0.457490\pi\)
0.133153 + 0.991096i \(0.457490\pi\)
\(354\) 0 0
\(355\) −2427.07 −0.362861
\(356\) 0 0
\(357\) −3012.04 −0.446538
\(358\) 0 0
\(359\) 8470.53 1.24528 0.622642 0.782507i \(-0.286059\pi\)
0.622642 + 0.782507i \(0.286059\pi\)
\(360\) 0 0
\(361\) 14056.6 2.04937
\(362\) 0 0
\(363\) 10372.2 1.49972
\(364\) 0 0
\(365\) 3273.70 0.469461
\(366\) 0 0
\(367\) 11962.7 1.70150 0.850748 0.525573i \(-0.176149\pi\)
0.850748 + 0.525573i \(0.176149\pi\)
\(368\) 0 0
\(369\) 8851.26 1.24872
\(370\) 0 0
\(371\) 920.169 0.128768
\(372\) 0 0
\(373\) 10471.0 1.45353 0.726764 0.686887i \(-0.241023\pi\)
0.726764 + 0.686887i \(0.241023\pi\)
\(374\) 0 0
\(375\) −974.697 −0.134222
\(376\) 0 0
\(377\) 1278.28 0.174627
\(378\) 0 0
\(379\) 11884.4 1.61071 0.805354 0.592795i \(-0.201975\pi\)
0.805354 + 0.592795i \(0.201975\pi\)
\(380\) 0 0
\(381\) −7723.52 −1.03855
\(382\) 0 0
\(383\) 1154.80 0.154067 0.0770333 0.997029i \(-0.475455\pi\)
0.0770333 + 0.997029i \(0.475455\pi\)
\(384\) 0 0
\(385\) −70.5140 −0.00933436
\(386\) 0 0
\(387\) 5651.60 0.742344
\(388\) 0 0
\(389\) 7269.51 0.947504 0.473752 0.880658i \(-0.342899\pi\)
0.473752 + 0.880658i \(0.342899\pi\)
\(390\) 0 0
\(391\) −518.621 −0.0670787
\(392\) 0 0
\(393\) 11395.0 1.46260
\(394\) 0 0
\(395\) 52.3152 0.00666396
\(396\) 0 0
\(397\) −7778.26 −0.983324 −0.491662 0.870786i \(-0.663610\pi\)
−0.491662 + 0.870786i \(0.663610\pi\)
\(398\) 0 0
\(399\) −17581.7 −2.20597
\(400\) 0 0
\(401\) −7533.41 −0.938156 −0.469078 0.883157i \(-0.655414\pi\)
−0.469078 + 0.883157i \(0.655414\pi\)
\(402\) 0 0
\(403\) 3830.27 0.473448
\(404\) 0 0
\(405\) −2495.37 −0.306162
\(406\) 0 0
\(407\) 233.408 0.0284266
\(408\) 0 0
\(409\) 11081.6 1.33973 0.669867 0.742482i \(-0.266351\pi\)
0.669867 + 0.742482i \(0.266351\pi\)
\(410\) 0 0
\(411\) −4187.87 −0.502609
\(412\) 0 0
\(413\) −9266.32 −1.10403
\(414\) 0 0
\(415\) −758.800 −0.0897543
\(416\) 0 0
\(417\) 11246.0 1.32067
\(418\) 0 0
\(419\) 6405.75 0.746877 0.373438 0.927655i \(-0.378179\pi\)
0.373438 + 0.927655i \(0.378179\pi\)
\(420\) 0 0
\(421\) −2929.76 −0.339163 −0.169581 0.985516i \(-0.554242\pi\)
−0.169581 + 0.985516i \(0.554242\pi\)
\(422\) 0 0
\(423\) −3660.78 −0.420787
\(424\) 0 0
\(425\) −619.408 −0.0706957
\(426\) 0 0
\(427\) 4134.95 0.468628
\(428\) 0 0
\(429\) −310.904 −0.0349897
\(430\) 0 0
\(431\) 2013.91 0.225074 0.112537 0.993648i \(-0.464102\pi\)
0.112537 + 0.993648i \(0.464102\pi\)
\(432\) 0 0
\(433\) 5405.69 0.599956 0.299978 0.953946i \(-0.403021\pi\)
0.299978 + 0.953946i \(0.403021\pi\)
\(434\) 0 0
\(435\) −1130.65 −0.124622
\(436\) 0 0
\(437\) −3027.25 −0.331380
\(438\) 0 0
\(439\) −4144.69 −0.450604 −0.225302 0.974289i \(-0.572337\pi\)
−0.225302 + 0.974289i \(0.572337\pi\)
\(440\) 0 0
\(441\) −3377.87 −0.364741
\(442\) 0 0
\(443\) 13110.1 1.40605 0.703027 0.711163i \(-0.251831\pi\)
0.703027 + 0.711163i \(0.251831\pi\)
\(444\) 0 0
\(445\) 211.486 0.0225290
\(446\) 0 0
\(447\) 5938.89 0.628412
\(448\) 0 0
\(449\) −2901.88 −0.305007 −0.152503 0.988303i \(-0.548733\pi\)
−0.152503 + 0.988303i \(0.548733\pi\)
\(450\) 0 0
\(451\) 236.865 0.0247307
\(452\) 0 0
\(453\) 2400.99 0.249025
\(454\) 0 0
\(455\) −3436.07 −0.354034
\(456\) 0 0
\(457\) 1766.65 0.180832 0.0904160 0.995904i \(-0.471180\pi\)
0.0904160 + 0.995904i \(0.471180\pi\)
\(458\) 0 0
\(459\) 1314.14 0.133636
\(460\) 0 0
\(461\) −15729.5 −1.58915 −0.794574 0.607167i \(-0.792306\pi\)
−0.794574 + 0.607167i \(0.792306\pi\)
\(462\) 0 0
\(463\) −16697.6 −1.67603 −0.838016 0.545646i \(-0.816284\pi\)
−0.838016 + 0.545646i \(0.816284\pi\)
\(464\) 0 0
\(465\) −3387.92 −0.337873
\(466\) 0 0
\(467\) 5640.48 0.558908 0.279454 0.960159i \(-0.409847\pi\)
0.279454 + 0.960159i \(0.409847\pi\)
\(468\) 0 0
\(469\) −2430.83 −0.239329
\(470\) 0 0
\(471\) 8039.70 0.786517
\(472\) 0 0
\(473\) 151.240 0.0147020
\(474\) 0 0
\(475\) −3615.56 −0.349249
\(476\) 0 0
\(477\) −1995.02 −0.191500
\(478\) 0 0
\(479\) −9564.45 −0.912340 −0.456170 0.889893i \(-0.650779\pi\)
−0.456170 + 0.889893i \(0.650779\pi\)
\(480\) 0 0
\(481\) 11373.7 1.07816
\(482\) 0 0
\(483\) 2544.71 0.239727
\(484\) 0 0
\(485\) −602.732 −0.0564302
\(486\) 0 0
\(487\) 906.403 0.0843389 0.0421694 0.999110i \(-0.486573\pi\)
0.0421694 + 0.999110i \(0.486573\pi\)
\(488\) 0 0
\(489\) −19387.8 −1.79294
\(490\) 0 0
\(491\) −20026.0 −1.84065 −0.920326 0.391153i \(-0.872076\pi\)
−0.920326 + 0.391153i \(0.872076\pi\)
\(492\) 0 0
\(493\) −718.513 −0.0656393
\(494\) 0 0
\(495\) 152.881 0.0138818
\(496\) 0 0
\(497\) 7567.95 0.683036
\(498\) 0 0
\(499\) −19999.0 −1.79414 −0.897070 0.441888i \(-0.854309\pi\)
−0.897070 + 0.441888i \(0.854309\pi\)
\(500\) 0 0
\(501\) 12966.4 1.15628
\(502\) 0 0
\(503\) −19754.4 −1.75111 −0.875554 0.483121i \(-0.839503\pi\)
−0.875554 + 0.483121i \(0.839503\pi\)
\(504\) 0 0
\(505\) 850.005 0.0749004
\(506\) 0 0
\(507\) 1981.26 0.173552
\(508\) 0 0
\(509\) −6235.90 −0.543028 −0.271514 0.962434i \(-0.587524\pi\)
−0.271514 + 0.962434i \(0.587524\pi\)
\(510\) 0 0
\(511\) −10207.8 −0.883696
\(512\) 0 0
\(513\) 7670.79 0.660183
\(514\) 0 0
\(515\) 2706.51 0.231579
\(516\) 0 0
\(517\) −97.9647 −0.00833362
\(518\) 0 0
\(519\) 12694.2 1.07363
\(520\) 0 0
\(521\) 15678.4 1.31839 0.659197 0.751970i \(-0.270896\pi\)
0.659197 + 0.751970i \(0.270896\pi\)
\(522\) 0 0
\(523\) −8483.72 −0.709307 −0.354653 0.934998i \(-0.615401\pi\)
−0.354653 + 0.934998i \(0.615401\pi\)
\(524\) 0 0
\(525\) 3039.24 0.252654
\(526\) 0 0
\(527\) −2152.98 −0.177961
\(528\) 0 0
\(529\) −11728.8 −0.963988
\(530\) 0 0
\(531\) 20090.3 1.64189
\(532\) 0 0
\(533\) 11542.2 0.937987
\(534\) 0 0
\(535\) −8016.86 −0.647849
\(536\) 0 0
\(537\) 10366.6 0.833058
\(538\) 0 0
\(539\) −90.3939 −0.00722364
\(540\) 0 0
\(541\) −20404.7 −1.62156 −0.810781 0.585350i \(-0.800957\pi\)
−0.810781 + 0.585350i \(0.800957\pi\)
\(542\) 0 0
\(543\) 18984.6 1.50038
\(544\) 0 0
\(545\) −3466.97 −0.272493
\(546\) 0 0
\(547\) −7199.63 −0.562768 −0.281384 0.959595i \(-0.590793\pi\)
−0.281384 + 0.959595i \(0.590793\pi\)
\(548\) 0 0
\(549\) −8964.98 −0.696933
\(550\) 0 0
\(551\) −4194.05 −0.324269
\(552\) 0 0
\(553\) −163.126 −0.0125440
\(554\) 0 0
\(555\) −10060.2 −0.769424
\(556\) 0 0
\(557\) −10162.3 −0.773050 −0.386525 0.922279i \(-0.626325\pi\)
−0.386525 + 0.922279i \(0.626325\pi\)
\(558\) 0 0
\(559\) 7369.77 0.557617
\(560\) 0 0
\(561\) 174.758 0.0131520
\(562\) 0 0
\(563\) 1311.95 0.0982101 0.0491051 0.998794i \(-0.484363\pi\)
0.0491051 + 0.998794i \(0.484363\pi\)
\(564\) 0 0
\(565\) 1362.13 0.101425
\(566\) 0 0
\(567\) 7780.89 0.576308
\(568\) 0 0
\(569\) 4043.91 0.297943 0.148971 0.988842i \(-0.452404\pi\)
0.148971 + 0.988842i \(0.452404\pi\)
\(570\) 0 0
\(571\) −11300.2 −0.828193 −0.414096 0.910233i \(-0.635902\pi\)
−0.414096 + 0.910233i \(0.635902\pi\)
\(572\) 0 0
\(573\) 38605.9 2.81463
\(574\) 0 0
\(575\) 523.303 0.0379535
\(576\) 0 0
\(577\) −27410.8 −1.97769 −0.988845 0.148946i \(-0.952412\pi\)
−0.988845 + 0.148946i \(0.952412\pi\)
\(578\) 0 0
\(579\) 11641.1 0.835557
\(580\) 0 0
\(581\) 2366.04 0.168950
\(582\) 0 0
\(583\) −53.3879 −0.00379263
\(584\) 0 0
\(585\) 7449.74 0.526511
\(586\) 0 0
\(587\) −7279.48 −0.511850 −0.255925 0.966697i \(-0.582380\pi\)
−0.255925 + 0.966697i \(0.582380\pi\)
\(588\) 0 0
\(589\) −12567.2 −0.879155
\(590\) 0 0
\(591\) −1391.51 −0.0968514
\(592\) 0 0
\(593\) 14007.0 0.969983 0.484992 0.874519i \(-0.338823\pi\)
0.484992 + 0.874519i \(0.338823\pi\)
\(594\) 0 0
\(595\) 1931.40 0.133075
\(596\) 0 0
\(597\) 20784.4 1.42487
\(598\) 0 0
\(599\) 15810.3 1.07845 0.539225 0.842162i \(-0.318717\pi\)
0.539225 + 0.842162i \(0.318717\pi\)
\(600\) 0 0
\(601\) 20133.1 1.36646 0.683232 0.730202i \(-0.260574\pi\)
0.683232 + 0.730202i \(0.260574\pi\)
\(602\) 0 0
\(603\) 5270.29 0.355925
\(604\) 0 0
\(605\) −6650.91 −0.446939
\(606\) 0 0
\(607\) 10325.2 0.690421 0.345210 0.938525i \(-0.387808\pi\)
0.345210 + 0.938525i \(0.387808\pi\)
\(608\) 0 0
\(609\) 3525.51 0.234583
\(610\) 0 0
\(611\) −4773.71 −0.316078
\(612\) 0 0
\(613\) −6423.80 −0.423254 −0.211627 0.977350i \(-0.567876\pi\)
−0.211627 + 0.977350i \(0.567876\pi\)
\(614\) 0 0
\(615\) −10209.2 −0.669387
\(616\) 0 0
\(617\) −17619.9 −1.14967 −0.574837 0.818268i \(-0.694935\pi\)
−0.574837 + 0.818268i \(0.694935\pi\)
\(618\) 0 0
\(619\) −19401.6 −1.25980 −0.629901 0.776675i \(-0.716905\pi\)
−0.629901 + 0.776675i \(0.716905\pi\)
\(620\) 0 0
\(621\) −1110.24 −0.0717433
\(622\) 0 0
\(623\) −659.442 −0.0424077
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 1020.08 0.0649731
\(628\) 0 0
\(629\) −6393.11 −0.405262
\(630\) 0 0
\(631\) 3806.79 0.240168 0.120084 0.992764i \(-0.461684\pi\)
0.120084 + 0.992764i \(0.461684\pi\)
\(632\) 0 0
\(633\) 14483.0 0.909393
\(634\) 0 0
\(635\) 4952.51 0.309503
\(636\) 0 0
\(637\) −4404.79 −0.273978
\(638\) 0 0
\(639\) −16408.1 −1.01580
\(640\) 0 0
\(641\) 24251.8 1.49436 0.747182 0.664620i \(-0.231407\pi\)
0.747182 + 0.664620i \(0.231407\pi\)
\(642\) 0 0
\(643\) −21994.4 −1.34895 −0.674476 0.738297i \(-0.735630\pi\)
−0.674476 + 0.738297i \(0.735630\pi\)
\(644\) 0 0
\(645\) −6518.64 −0.397940
\(646\) 0 0
\(647\) 13553.0 0.823530 0.411765 0.911290i \(-0.364912\pi\)
0.411765 + 0.911290i \(0.364912\pi\)
\(648\) 0 0
\(649\) 537.629 0.0325174
\(650\) 0 0
\(651\) 10564.0 0.635999
\(652\) 0 0
\(653\) 1789.08 0.107216 0.0536080 0.998562i \(-0.482928\pi\)
0.0536080 + 0.998562i \(0.482928\pi\)
\(654\) 0 0
\(655\) −7306.78 −0.435877
\(656\) 0 0
\(657\) 22131.6 1.31421
\(658\) 0 0
\(659\) 2820.26 0.166710 0.0833548 0.996520i \(-0.473437\pi\)
0.0833548 + 0.996520i \(0.473437\pi\)
\(660\) 0 0
\(661\) 10362.8 0.609782 0.304891 0.952387i \(-0.401380\pi\)
0.304891 + 0.952387i \(0.401380\pi\)
\(662\) 0 0
\(663\) 8515.75 0.498830
\(664\) 0 0
\(665\) 11273.8 0.657412
\(666\) 0 0
\(667\) 607.032 0.0352389
\(668\) 0 0
\(669\) 434.069 0.0250853
\(670\) 0 0
\(671\) −239.908 −0.0138026
\(672\) 0 0
\(673\) 15137.2 0.867010 0.433505 0.901151i \(-0.357277\pi\)
0.433505 + 0.901151i \(0.357277\pi\)
\(674\) 0 0
\(675\) −1326.00 −0.0756118
\(676\) 0 0
\(677\) −2478.96 −0.140730 −0.0703650 0.997521i \(-0.522416\pi\)
−0.0703650 + 0.997521i \(0.522416\pi\)
\(678\) 0 0
\(679\) 1879.40 0.106222
\(680\) 0 0
\(681\) 40385.9 2.27253
\(682\) 0 0
\(683\) 16268.0 0.911389 0.455695 0.890136i \(-0.349391\pi\)
0.455695 + 0.890136i \(0.349391\pi\)
\(684\) 0 0
\(685\) 2685.37 0.149785
\(686\) 0 0
\(687\) 34544.6 1.91843
\(688\) 0 0
\(689\) −2601.53 −0.143847
\(690\) 0 0
\(691\) 9048.46 0.498147 0.249074 0.968485i \(-0.419874\pi\)
0.249074 + 0.968485i \(0.419874\pi\)
\(692\) 0 0
\(693\) −476.705 −0.0261306
\(694\) 0 0
\(695\) −7211.24 −0.393580
\(696\) 0 0
\(697\) −6487.80 −0.352572
\(698\) 0 0
\(699\) −19638.8 −1.06267
\(700\) 0 0
\(701\) −10797.5 −0.581764 −0.290882 0.956759i \(-0.593949\pi\)
−0.290882 + 0.956759i \(0.593949\pi\)
\(702\) 0 0
\(703\) −37317.3 −2.00206
\(704\) 0 0
\(705\) 4222.39 0.225567
\(706\) 0 0
\(707\) −2650.43 −0.140990
\(708\) 0 0
\(709\) −15359.5 −0.813594 −0.406797 0.913519i \(-0.633354\pi\)
−0.406797 + 0.913519i \(0.633354\pi\)
\(710\) 0 0
\(711\) 353.673 0.0186551
\(712\) 0 0
\(713\) 1818.93 0.0955393
\(714\) 0 0
\(715\) 199.360 0.0104274
\(716\) 0 0
\(717\) 35553.0 1.85182
\(718\) 0 0
\(719\) 21305.1 1.10507 0.552537 0.833489i \(-0.313660\pi\)
0.552537 + 0.833489i \(0.313660\pi\)
\(720\) 0 0
\(721\) −8439.28 −0.435916
\(722\) 0 0
\(723\) −6327.41 −0.325476
\(724\) 0 0
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) 16591.5 0.846417 0.423208 0.906032i \(-0.360904\pi\)
0.423208 + 0.906032i \(0.360904\pi\)
\(728\) 0 0
\(729\) −28036.5 −1.42440
\(730\) 0 0
\(731\) −4142.51 −0.209598
\(732\) 0 0
\(733\) −10379.7 −0.523035 −0.261518 0.965199i \(-0.584223\pi\)
−0.261518 + 0.965199i \(0.584223\pi\)
\(734\) 0 0
\(735\) 3896.08 0.195523
\(736\) 0 0
\(737\) 141.036 0.00704903
\(738\) 0 0
\(739\) −22623.7 −1.12615 −0.563076 0.826405i \(-0.690382\pi\)
−0.563076 + 0.826405i \(0.690382\pi\)
\(740\) 0 0
\(741\) 49707.4 2.46430
\(742\) 0 0
\(743\) 12857.3 0.634841 0.317420 0.948285i \(-0.397183\pi\)
0.317420 + 0.948285i \(0.397183\pi\)
\(744\) 0 0
\(745\) −3808.17 −0.187276
\(746\) 0 0
\(747\) −5129.81 −0.251259
\(748\) 0 0
\(749\) 24997.7 1.21949
\(750\) 0 0
\(751\) −10496.1 −0.509997 −0.254999 0.966941i \(-0.582075\pi\)
−0.254999 + 0.966941i \(0.582075\pi\)
\(752\) 0 0
\(753\) −6414.20 −0.310420
\(754\) 0 0
\(755\) −1539.58 −0.0742132
\(756\) 0 0
\(757\) −22022.8 −1.05738 −0.528688 0.848817i \(-0.677316\pi\)
−0.528688 + 0.848817i \(0.677316\pi\)
\(758\) 0 0
\(759\) −147.643 −0.00706075
\(760\) 0 0
\(761\) −2439.55 −0.116207 −0.0581034 0.998311i \(-0.518505\pi\)
−0.0581034 + 0.998311i \(0.518505\pi\)
\(762\) 0 0
\(763\) 10810.5 0.512931
\(764\) 0 0
\(765\) −4187.46 −0.197906
\(766\) 0 0
\(767\) 26198.0 1.23332
\(768\) 0 0
\(769\) −14473.6 −0.678713 −0.339357 0.940658i \(-0.610209\pi\)
−0.339357 + 0.940658i \(0.610209\pi\)
\(770\) 0 0
\(771\) −20801.0 −0.971633
\(772\) 0 0
\(773\) 20766.8 0.966275 0.483137 0.875545i \(-0.339497\pi\)
0.483137 + 0.875545i \(0.339497\pi\)
\(774\) 0 0
\(775\) 2172.42 0.100691
\(776\) 0 0
\(777\) 31369.0 1.44833
\(778\) 0 0
\(779\) −37870.1 −1.74177
\(780\) 0 0
\(781\) −439.090 −0.0201176
\(782\) 0 0
\(783\) −1538.17 −0.0702038
\(784\) 0 0
\(785\) −5155.26 −0.234394
\(786\) 0 0
\(787\) 27806.3 1.25945 0.629725 0.776819i \(-0.283168\pi\)
0.629725 + 0.776819i \(0.283168\pi\)
\(788\) 0 0
\(789\) 2835.91 0.127961
\(790\) 0 0
\(791\) −4247.32 −0.190919
\(792\) 0 0
\(793\) −11690.5 −0.523506
\(794\) 0 0
\(795\) 2301.08 0.102655
\(796\) 0 0
\(797\) −43285.6 −1.92378 −0.961890 0.273436i \(-0.911840\pi\)
−0.961890 + 0.273436i \(0.911840\pi\)
\(798\) 0 0
\(799\) 2683.28 0.118808
\(800\) 0 0
\(801\) 1429.74 0.0630677
\(802\) 0 0
\(803\) 592.256 0.0260277
\(804\) 0 0
\(805\) −1631.73 −0.0714422
\(806\) 0 0
\(807\) −951.222 −0.0414927
\(808\) 0 0
\(809\) −4576.49 −0.198888 −0.0994442 0.995043i \(-0.531706\pi\)
−0.0994442 + 0.995043i \(0.531706\pi\)
\(810\) 0 0
\(811\) −12862.6 −0.556925 −0.278462 0.960447i \(-0.589825\pi\)
−0.278462 + 0.960447i \(0.589825\pi\)
\(812\) 0 0
\(813\) −55618.4 −2.39929
\(814\) 0 0
\(815\) 12431.9 0.534321
\(816\) 0 0
\(817\) −24180.3 −1.03545
\(818\) 0 0
\(819\) −23229.3 −0.991083
\(820\) 0 0
\(821\) −11106.9 −0.472147 −0.236074 0.971735i \(-0.575861\pi\)
−0.236074 + 0.971735i \(0.575861\pi\)
\(822\) 0 0
\(823\) −19234.1 −0.814650 −0.407325 0.913283i \(-0.633538\pi\)
−0.407325 + 0.913283i \(0.633538\pi\)
\(824\) 0 0
\(825\) −176.336 −0.00744147
\(826\) 0 0
\(827\) 22986.1 0.966513 0.483257 0.875479i \(-0.339454\pi\)
0.483257 + 0.875479i \(0.339454\pi\)
\(828\) 0 0
\(829\) −10960.1 −0.459180 −0.229590 0.973287i \(-0.573739\pi\)
−0.229590 + 0.973287i \(0.573739\pi\)
\(830\) 0 0
\(831\) 31830.6 1.32875
\(832\) 0 0
\(833\) 2475.91 0.102984
\(834\) 0 0
\(835\) −8314.40 −0.344589
\(836\) 0 0
\(837\) −4609.02 −0.190336
\(838\) 0 0
\(839\) 35112.8 1.44485 0.722425 0.691449i \(-0.243027\pi\)
0.722425 + 0.691449i \(0.243027\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) −36753.5 −1.50161
\(844\) 0 0
\(845\) −1270.44 −0.0517211
\(846\) 0 0
\(847\) 20738.4 0.841300
\(848\) 0 0
\(849\) −31879.6 −1.28870
\(850\) 0 0
\(851\) 5401.18 0.217568
\(852\) 0 0
\(853\) −40183.5 −1.61296 −0.806481 0.591259i \(-0.798631\pi\)
−0.806481 + 0.591259i \(0.798631\pi\)
\(854\) 0 0
\(855\) −24442.7 −0.977688
\(856\) 0 0
\(857\) −3343.14 −0.133255 −0.0666274 0.997778i \(-0.521224\pi\)
−0.0666274 + 0.997778i \(0.521224\pi\)
\(858\) 0 0
\(859\) −17877.4 −0.710091 −0.355046 0.934849i \(-0.615535\pi\)
−0.355046 + 0.934849i \(0.615535\pi\)
\(860\) 0 0
\(861\) 31833.6 1.26003
\(862\) 0 0
\(863\) 10257.9 0.404615 0.202307 0.979322i \(-0.435156\pi\)
0.202307 + 0.979322i \(0.435156\pi\)
\(864\) 0 0
\(865\) −8139.84 −0.319957
\(866\) 0 0
\(867\) 33522.8 1.31314
\(868\) 0 0
\(869\) 9.46451 0.000369461 0
\(870\) 0 0
\(871\) 6872.53 0.267356
\(872\) 0 0
\(873\) −4074.72 −0.157971
\(874\) 0 0
\(875\) −1948.84 −0.0752945
\(876\) 0 0
\(877\) −15682.7 −0.603838 −0.301919 0.953334i \(-0.597627\pi\)
−0.301919 + 0.953334i \(0.597627\pi\)
\(878\) 0 0
\(879\) 28844.9 1.10684
\(880\) 0 0
\(881\) 29798.4 1.13954 0.569770 0.821805i \(-0.307032\pi\)
0.569770 + 0.821805i \(0.307032\pi\)
\(882\) 0 0
\(883\) 38705.2 1.47512 0.737562 0.675279i \(-0.235977\pi\)
0.737562 + 0.675279i \(0.235977\pi\)
\(884\) 0 0
\(885\) −23172.4 −0.880150
\(886\) 0 0
\(887\) −14576.7 −0.551790 −0.275895 0.961188i \(-0.588974\pi\)
−0.275895 + 0.961188i \(0.588974\pi\)
\(888\) 0 0
\(889\) −15442.6 −0.582597
\(890\) 0 0
\(891\) −451.445 −0.0169741
\(892\) 0 0
\(893\) 15662.6 0.586931
\(894\) 0 0
\(895\) −6647.33 −0.248263
\(896\) 0 0
\(897\) −7194.48 −0.267800
\(898\) 0 0
\(899\) 2520.00 0.0934892
\(900\) 0 0
\(901\) 1462.31 0.0540694
\(902\) 0 0
\(903\) 20326.0 0.749066
\(904\) 0 0
\(905\) −12173.4 −0.447136
\(906\) 0 0
\(907\) −7195.29 −0.263413 −0.131707 0.991289i \(-0.542046\pi\)
−0.131707 + 0.991289i \(0.542046\pi\)
\(908\) 0 0
\(909\) 5746.40 0.209676
\(910\) 0 0
\(911\) 43512.8 1.58248 0.791242 0.611503i \(-0.209435\pi\)
0.791242 + 0.611503i \(0.209435\pi\)
\(912\) 0 0
\(913\) −137.277 −0.00497613
\(914\) 0 0
\(915\) 10340.3 0.373597
\(916\) 0 0
\(917\) 22783.6 0.820479
\(918\) 0 0
\(919\) 62.2336 0.00223384 0.00111692 0.999999i \(-0.499644\pi\)
0.00111692 + 0.999999i \(0.499644\pi\)
\(920\) 0 0
\(921\) −15254.5 −0.545770
\(922\) 0 0
\(923\) −21396.4 −0.763022
\(924\) 0 0
\(925\) 6450.83 0.229299
\(926\) 0 0
\(927\) 18297.2 0.648283
\(928\) 0 0
\(929\) −10018.2 −0.353806 −0.176903 0.984228i \(-0.556608\pi\)
−0.176903 + 0.984228i \(0.556608\pi\)
\(930\) 0 0
\(931\) 14452.2 0.508756
\(932\) 0 0
\(933\) −12518.3 −0.439261
\(934\) 0 0
\(935\) −112.059 −0.00391949
\(936\) 0 0
\(937\) −46257.7 −1.61278 −0.806389 0.591385i \(-0.798581\pi\)
−0.806389 + 0.591385i \(0.798581\pi\)
\(938\) 0 0
\(939\) 13186.3 0.458274
\(940\) 0 0
\(941\) 35906.8 1.24392 0.621960 0.783049i \(-0.286337\pi\)
0.621960 + 0.783049i \(0.286337\pi\)
\(942\) 0 0
\(943\) 5481.18 0.189281
\(944\) 0 0
\(945\) 4134.66 0.142329
\(946\) 0 0
\(947\) −6769.82 −0.232302 −0.116151 0.993232i \(-0.537056\pi\)
−0.116151 + 0.993232i \(0.537056\pi\)
\(948\) 0 0
\(949\) 28860.0 0.987180
\(950\) 0 0
\(951\) 60749.2 2.07143
\(952\) 0 0
\(953\) 33394.5 1.13510 0.567551 0.823338i \(-0.307891\pi\)
0.567551 + 0.823338i \(0.307891\pi\)
\(954\) 0 0
\(955\) −24755.0 −0.838801
\(956\) 0 0
\(957\) −204.549 −0.00690923
\(958\) 0 0
\(959\) −8373.35 −0.281949
\(960\) 0 0
\(961\) −22240.0 −0.746533
\(962\) 0 0
\(963\) −54197.4 −1.81359
\(964\) 0 0
\(965\) −7464.56 −0.249008
\(966\) 0 0
\(967\) −32335.3 −1.07532 −0.537660 0.843162i \(-0.680691\pi\)
−0.537660 + 0.843162i \(0.680691\pi\)
\(968\) 0 0
\(969\) −27940.3 −0.926287
\(970\) 0 0
\(971\) −32008.8 −1.05789 −0.528945 0.848656i \(-0.677412\pi\)
−0.528945 + 0.848656i \(0.677412\pi\)
\(972\) 0 0
\(973\) 22485.6 0.740859
\(974\) 0 0
\(975\) −8592.63 −0.282240
\(976\) 0 0
\(977\) −29266.9 −0.958375 −0.479188 0.877713i \(-0.659069\pi\)
−0.479188 + 0.877713i \(0.659069\pi\)
\(978\) 0 0
\(979\) 38.2606 0.00124904
\(980\) 0 0
\(981\) −23438.2 −0.762819
\(982\) 0 0
\(983\) −21313.8 −0.691563 −0.345781 0.938315i \(-0.612386\pi\)
−0.345781 + 0.938315i \(0.612386\pi\)
\(984\) 0 0
\(985\) 892.273 0.0288631
\(986\) 0 0
\(987\) −13166.0 −0.424598
\(988\) 0 0
\(989\) 3499.78 0.112524
\(990\) 0 0
\(991\) 44567.4 1.42859 0.714293 0.699846i \(-0.246748\pi\)
0.714293 + 0.699846i \(0.246748\pi\)
\(992\) 0 0
\(993\) 55406.6 1.77067
\(994\) 0 0
\(995\) −13327.5 −0.424633
\(996\) 0 0
\(997\) 32449.3 1.03077 0.515386 0.856958i \(-0.327649\pi\)
0.515386 + 0.856958i \(0.327649\pi\)
\(998\) 0 0
\(999\) −13686.1 −0.433443
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.4.a.d.1.2 9
4.3 odd 2 2320.4.a.y.1.8 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.4.a.d.1.2 9 1.1 even 1 trivial
2320.4.a.y.1.8 9 4.3 odd 2