Properties

Label 1160.4.a.g.1.5
Level $1160$
Weight $4$
Character 1160.1
Self dual yes
Analytic conductor $68.442$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,4,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.4422156067\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 2 x^{10} - 179 x^{9} + 370 x^{8} + 10353 x^{7} - 19394 x^{6} - 210392 x^{5} + 267796 x^{4} + \cdots + 567808 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.901365\) of defining polynomial
Character \(\chi\) \(=\) 1160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.901365 q^{3} -5.00000 q^{5} -4.01917 q^{7} -26.1875 q^{9} +17.6839 q^{11} +23.0707 q^{13} +4.50682 q^{15} -30.3703 q^{17} -31.8815 q^{19} +3.62274 q^{21} -133.053 q^{23} +25.0000 q^{25} +47.9414 q^{27} -29.0000 q^{29} +138.251 q^{31} -15.9396 q^{33} +20.0959 q^{35} -18.2916 q^{37} -20.7951 q^{39} -299.867 q^{41} +323.842 q^{43} +130.938 q^{45} -411.129 q^{47} -326.846 q^{49} +27.3747 q^{51} +129.190 q^{53} -88.4194 q^{55} +28.7369 q^{57} +118.350 q^{59} +142.293 q^{61} +105.252 q^{63} -115.354 q^{65} +506.102 q^{67} +119.929 q^{69} +1137.48 q^{71} +662.100 q^{73} -22.5341 q^{75} -71.0745 q^{77} -415.685 q^{79} +663.851 q^{81} -398.932 q^{83} +151.851 q^{85} +26.1396 q^{87} +342.392 q^{89} -92.7252 q^{91} -124.614 q^{93} +159.408 q^{95} +1783.40 q^{97} -463.097 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 2 q^{3} - 55 q^{5} + 56 q^{7} + 65 q^{9} - 8 q^{11} + 16 q^{13} - 10 q^{15} + 64 q^{17} + 160 q^{19} - 48 q^{21} + 140 q^{23} + 275 q^{25} - 136 q^{27} - 319 q^{29} - 144 q^{31} - 424 q^{33} - 280 q^{35}+ \cdots + 6884 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.901365 −0.173468 −0.0867339 0.996232i \(-0.527643\pi\)
−0.0867339 + 0.996232i \(0.527643\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −4.01917 −0.217015 −0.108507 0.994096i \(-0.534607\pi\)
−0.108507 + 0.994096i \(0.534607\pi\)
\(8\) 0 0
\(9\) −26.1875 −0.969909
\(10\) 0 0
\(11\) 17.6839 0.484717 0.242359 0.970187i \(-0.422079\pi\)
0.242359 + 0.970187i \(0.422079\pi\)
\(12\) 0 0
\(13\) 23.0707 0.492205 0.246103 0.969244i \(-0.420850\pi\)
0.246103 + 0.969244i \(0.420850\pi\)
\(14\) 0 0
\(15\) 4.50682 0.0775771
\(16\) 0 0
\(17\) −30.3703 −0.433287 −0.216643 0.976251i \(-0.569511\pi\)
−0.216643 + 0.976251i \(0.569511\pi\)
\(18\) 0 0
\(19\) −31.8815 −0.384954 −0.192477 0.981302i \(-0.561652\pi\)
−0.192477 + 0.981302i \(0.561652\pi\)
\(20\) 0 0
\(21\) 3.62274 0.0376451
\(22\) 0 0
\(23\) −133.053 −1.20623 −0.603117 0.797653i \(-0.706075\pi\)
−0.603117 + 0.797653i \(0.706075\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 47.9414 0.341716
\(28\) 0 0
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) 138.251 0.800985 0.400493 0.916300i \(-0.368839\pi\)
0.400493 + 0.916300i \(0.368839\pi\)
\(32\) 0 0
\(33\) −15.9396 −0.0840828
\(34\) 0 0
\(35\) 20.0959 0.0970520
\(36\) 0 0
\(37\) −18.2916 −0.0812736 −0.0406368 0.999174i \(-0.512939\pi\)
−0.0406368 + 0.999174i \(0.512939\pi\)
\(38\) 0 0
\(39\) −20.7951 −0.0853817
\(40\) 0 0
\(41\) −299.867 −1.14223 −0.571114 0.820871i \(-0.693489\pi\)
−0.571114 + 0.820871i \(0.693489\pi\)
\(42\) 0 0
\(43\) 323.842 1.14850 0.574249 0.818681i \(-0.305294\pi\)
0.574249 + 0.818681i \(0.305294\pi\)
\(44\) 0 0
\(45\) 130.938 0.433756
\(46\) 0 0
\(47\) −411.129 −1.27594 −0.637972 0.770059i \(-0.720227\pi\)
−0.637972 + 0.770059i \(0.720227\pi\)
\(48\) 0 0
\(49\) −326.846 −0.952905
\(50\) 0 0
\(51\) 27.3747 0.0751613
\(52\) 0 0
\(53\) 129.190 0.334822 0.167411 0.985887i \(-0.446459\pi\)
0.167411 + 0.985887i \(0.446459\pi\)
\(54\) 0 0
\(55\) −88.4194 −0.216772
\(56\) 0 0
\(57\) 28.7369 0.0667771
\(58\) 0 0
\(59\) 118.350 0.261149 0.130575 0.991438i \(-0.458318\pi\)
0.130575 + 0.991438i \(0.458318\pi\)
\(60\) 0 0
\(61\) 142.293 0.298667 0.149334 0.988787i \(-0.452287\pi\)
0.149334 + 0.988787i \(0.452287\pi\)
\(62\) 0 0
\(63\) 105.252 0.210485
\(64\) 0 0
\(65\) −115.354 −0.220121
\(66\) 0 0
\(67\) 506.102 0.922839 0.461419 0.887182i \(-0.347340\pi\)
0.461419 + 0.887182i \(0.347340\pi\)
\(68\) 0 0
\(69\) 119.929 0.209243
\(70\) 0 0
\(71\) 1137.48 1.90132 0.950661 0.310233i \(-0.100407\pi\)
0.950661 + 0.310233i \(0.100407\pi\)
\(72\) 0 0
\(73\) 662.100 1.06155 0.530773 0.847514i \(-0.321902\pi\)
0.530773 + 0.847514i \(0.321902\pi\)
\(74\) 0 0
\(75\) −22.5341 −0.0346936
\(76\) 0 0
\(77\) −71.0745 −0.105191
\(78\) 0 0
\(79\) −415.685 −0.592003 −0.296001 0.955187i \(-0.595653\pi\)
−0.296001 + 0.955187i \(0.595653\pi\)
\(80\) 0 0
\(81\) 663.851 0.910632
\(82\) 0 0
\(83\) −398.932 −0.527571 −0.263786 0.964581i \(-0.584971\pi\)
−0.263786 + 0.964581i \(0.584971\pi\)
\(84\) 0 0
\(85\) 151.851 0.193772
\(86\) 0 0
\(87\) 26.1396 0.0322122
\(88\) 0 0
\(89\) 342.392 0.407792 0.203896 0.978993i \(-0.434640\pi\)
0.203896 + 0.978993i \(0.434640\pi\)
\(90\) 0 0
\(91\) −92.7252 −0.106816
\(92\) 0 0
\(93\) −124.614 −0.138945
\(94\) 0 0
\(95\) 159.408 0.172157
\(96\) 0 0
\(97\) 1783.40 1.86677 0.933385 0.358875i \(-0.116840\pi\)
0.933385 + 0.358875i \(0.116840\pi\)
\(98\) 0 0
\(99\) −463.097 −0.470131
\(100\) 0 0
\(101\) 959.193 0.944983 0.472492 0.881335i \(-0.343355\pi\)
0.472492 + 0.881335i \(0.343355\pi\)
\(102\) 0 0
\(103\) −471.929 −0.451461 −0.225731 0.974190i \(-0.572477\pi\)
−0.225731 + 0.974190i \(0.572477\pi\)
\(104\) 0 0
\(105\) −18.1137 −0.0168354
\(106\) 0 0
\(107\) −537.002 −0.485177 −0.242588 0.970129i \(-0.577996\pi\)
−0.242588 + 0.970129i \(0.577996\pi\)
\(108\) 0 0
\(109\) 1041.18 0.914926 0.457463 0.889229i \(-0.348758\pi\)
0.457463 + 0.889229i \(0.348758\pi\)
\(110\) 0 0
\(111\) 16.4874 0.0140983
\(112\) 0 0
\(113\) −1025.51 −0.853737 −0.426868 0.904314i \(-0.640383\pi\)
−0.426868 + 0.904314i \(0.640383\pi\)
\(114\) 0 0
\(115\) 665.263 0.539444
\(116\) 0 0
\(117\) −604.166 −0.477394
\(118\) 0 0
\(119\) 122.063 0.0940297
\(120\) 0 0
\(121\) −1018.28 −0.765049
\(122\) 0 0
\(123\) 270.290 0.198140
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −895.813 −0.625910 −0.312955 0.949768i \(-0.601319\pi\)
−0.312955 + 0.949768i \(0.601319\pi\)
\(128\) 0 0
\(129\) −291.900 −0.199227
\(130\) 0 0
\(131\) 1841.66 1.22829 0.614147 0.789192i \(-0.289500\pi\)
0.614147 + 0.789192i \(0.289500\pi\)
\(132\) 0 0
\(133\) 128.137 0.0835407
\(134\) 0 0
\(135\) −239.707 −0.152820
\(136\) 0 0
\(137\) 2385.85 1.48786 0.743930 0.668257i \(-0.232959\pi\)
0.743930 + 0.668257i \(0.232959\pi\)
\(138\) 0 0
\(139\) −1034.75 −0.631411 −0.315706 0.948857i \(-0.602241\pi\)
−0.315706 + 0.948857i \(0.602241\pi\)
\(140\) 0 0
\(141\) 370.578 0.221335
\(142\) 0 0
\(143\) 407.980 0.238580
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 0 0
\(147\) 294.608 0.165298
\(148\) 0 0
\(149\) 1903.55 1.04661 0.523305 0.852146i \(-0.324699\pi\)
0.523305 + 0.852146i \(0.324699\pi\)
\(150\) 0 0
\(151\) 447.755 0.241310 0.120655 0.992695i \(-0.461501\pi\)
0.120655 + 0.992695i \(0.461501\pi\)
\(152\) 0 0
\(153\) 795.323 0.420249
\(154\) 0 0
\(155\) −691.253 −0.358211
\(156\) 0 0
\(157\) −303.006 −0.154029 −0.0770145 0.997030i \(-0.524539\pi\)
−0.0770145 + 0.997030i \(0.524539\pi\)
\(158\) 0 0
\(159\) −116.447 −0.0580809
\(160\) 0 0
\(161\) 534.761 0.261771
\(162\) 0 0
\(163\) 2707.00 1.30079 0.650394 0.759597i \(-0.274604\pi\)
0.650394 + 0.759597i \(0.274604\pi\)
\(164\) 0 0
\(165\) 79.6981 0.0376030
\(166\) 0 0
\(167\) −1409.93 −0.653314 −0.326657 0.945143i \(-0.605922\pi\)
−0.326657 + 0.945143i \(0.605922\pi\)
\(168\) 0 0
\(169\) −1664.74 −0.757734
\(170\) 0 0
\(171\) 834.898 0.373370
\(172\) 0 0
\(173\) 3281.47 1.44211 0.721056 0.692876i \(-0.243657\pi\)
0.721056 + 0.692876i \(0.243657\pi\)
\(174\) 0 0
\(175\) −100.479 −0.0434030
\(176\) 0 0
\(177\) −106.676 −0.0453010
\(178\) 0 0
\(179\) 2700.79 1.12774 0.563872 0.825862i \(-0.309311\pi\)
0.563872 + 0.825862i \(0.309311\pi\)
\(180\) 0 0
\(181\) 1628.09 0.668590 0.334295 0.942468i \(-0.391502\pi\)
0.334295 + 0.942468i \(0.391502\pi\)
\(182\) 0 0
\(183\) −128.257 −0.0518091
\(184\) 0 0
\(185\) 91.4581 0.0363466
\(186\) 0 0
\(187\) −537.064 −0.210021
\(188\) 0 0
\(189\) −192.685 −0.0741574
\(190\) 0 0
\(191\) −4348.90 −1.64751 −0.823757 0.566942i \(-0.808126\pi\)
−0.823757 + 0.566942i \(0.808126\pi\)
\(192\) 0 0
\(193\) 3742.36 1.39576 0.697878 0.716216i \(-0.254128\pi\)
0.697878 + 0.716216i \(0.254128\pi\)
\(194\) 0 0
\(195\) 103.976 0.0381839
\(196\) 0 0
\(197\) 3121.88 1.12906 0.564529 0.825413i \(-0.309058\pi\)
0.564529 + 0.825413i \(0.309058\pi\)
\(198\) 0 0
\(199\) 1250.31 0.445387 0.222693 0.974889i \(-0.428515\pi\)
0.222693 + 0.974889i \(0.428515\pi\)
\(200\) 0 0
\(201\) −456.183 −0.160083
\(202\) 0 0
\(203\) 116.556 0.0402987
\(204\) 0 0
\(205\) 1499.34 0.510820
\(206\) 0 0
\(207\) 3484.32 1.16994
\(208\) 0 0
\(209\) −563.789 −0.186594
\(210\) 0 0
\(211\) 277.499 0.0905395 0.0452697 0.998975i \(-0.485585\pi\)
0.0452697 + 0.998975i \(0.485585\pi\)
\(212\) 0 0
\(213\) −1025.28 −0.329818
\(214\) 0 0
\(215\) −1619.21 −0.513624
\(216\) 0 0
\(217\) −555.653 −0.173826
\(218\) 0 0
\(219\) −596.793 −0.184144
\(220\) 0 0
\(221\) −700.664 −0.213266
\(222\) 0 0
\(223\) 3144.67 0.944317 0.472158 0.881514i \(-0.343475\pi\)
0.472158 + 0.881514i \(0.343475\pi\)
\(224\) 0 0
\(225\) −654.689 −0.193982
\(226\) 0 0
\(227\) −4343.00 −1.26985 −0.634924 0.772575i \(-0.718968\pi\)
−0.634924 + 0.772575i \(0.718968\pi\)
\(228\) 0 0
\(229\) −2050.39 −0.591674 −0.295837 0.955238i \(-0.595599\pi\)
−0.295837 + 0.955238i \(0.595599\pi\)
\(230\) 0 0
\(231\) 64.0641 0.0182472
\(232\) 0 0
\(233\) 4920.15 1.38339 0.691695 0.722190i \(-0.256864\pi\)
0.691695 + 0.722190i \(0.256864\pi\)
\(234\) 0 0
\(235\) 2055.65 0.570620
\(236\) 0 0
\(237\) 374.684 0.102693
\(238\) 0 0
\(239\) 5301.89 1.43494 0.717470 0.696589i \(-0.245300\pi\)
0.717470 + 0.696589i \(0.245300\pi\)
\(240\) 0 0
\(241\) 4900.86 1.30993 0.654963 0.755661i \(-0.272684\pi\)
0.654963 + 0.755661i \(0.272684\pi\)
\(242\) 0 0
\(243\) −1892.79 −0.499681
\(244\) 0 0
\(245\) 1634.23 0.426152
\(246\) 0 0
\(247\) −735.530 −0.189476
\(248\) 0 0
\(249\) 359.583 0.0915166
\(250\) 0 0
\(251\) −7923.84 −1.99262 −0.996311 0.0858121i \(-0.972652\pi\)
−0.996311 + 0.0858121i \(0.972652\pi\)
\(252\) 0 0
\(253\) −2352.89 −0.584682
\(254\) 0 0
\(255\) −136.873 −0.0336131
\(256\) 0 0
\(257\) 2559.86 0.621323 0.310661 0.950521i \(-0.399449\pi\)
0.310661 + 0.950521i \(0.399449\pi\)
\(258\) 0 0
\(259\) 73.5171 0.0176376
\(260\) 0 0
\(261\) 759.439 0.180108
\(262\) 0 0
\(263\) 429.586 0.100720 0.0503601 0.998731i \(-0.483963\pi\)
0.0503601 + 0.998731i \(0.483963\pi\)
\(264\) 0 0
\(265\) −645.949 −0.149737
\(266\) 0 0
\(267\) −308.620 −0.0707387
\(268\) 0 0
\(269\) 307.430 0.0696815 0.0348407 0.999393i \(-0.488908\pi\)
0.0348407 + 0.999393i \(0.488908\pi\)
\(270\) 0 0
\(271\) 1636.65 0.366861 0.183431 0.983033i \(-0.441280\pi\)
0.183431 + 0.983033i \(0.441280\pi\)
\(272\) 0 0
\(273\) 83.5793 0.0185291
\(274\) 0 0
\(275\) 442.097 0.0969434
\(276\) 0 0
\(277\) 1340.76 0.290825 0.145413 0.989371i \(-0.453549\pi\)
0.145413 + 0.989371i \(0.453549\pi\)
\(278\) 0 0
\(279\) −3620.44 −0.776883
\(280\) 0 0
\(281\) −1421.87 −0.301856 −0.150928 0.988545i \(-0.548226\pi\)
−0.150928 + 0.988545i \(0.548226\pi\)
\(282\) 0 0
\(283\) −5999.19 −1.26012 −0.630061 0.776546i \(-0.716970\pi\)
−0.630061 + 0.776546i \(0.716970\pi\)
\(284\) 0 0
\(285\) −143.684 −0.0298636
\(286\) 0 0
\(287\) 1205.22 0.247881
\(288\) 0 0
\(289\) −3990.65 −0.812263
\(290\) 0 0
\(291\) −1607.49 −0.323825
\(292\) 0 0
\(293\) −2661.05 −0.530581 −0.265291 0.964168i \(-0.585468\pi\)
−0.265291 + 0.964168i \(0.585468\pi\)
\(294\) 0 0
\(295\) −591.748 −0.116790
\(296\) 0 0
\(297\) 847.789 0.165635
\(298\) 0 0
\(299\) −3069.62 −0.593715
\(300\) 0 0
\(301\) −1301.58 −0.249241
\(302\) 0 0
\(303\) −864.583 −0.163924
\(304\) 0 0
\(305\) −711.463 −0.133568
\(306\) 0 0
\(307\) 8439.64 1.56898 0.784488 0.620143i \(-0.212926\pi\)
0.784488 + 0.620143i \(0.212926\pi\)
\(308\) 0 0
\(309\) 425.380 0.0783140
\(310\) 0 0
\(311\) 5648.29 1.02986 0.514928 0.857234i \(-0.327819\pi\)
0.514928 + 0.857234i \(0.327819\pi\)
\(312\) 0 0
\(313\) 2739.26 0.494671 0.247336 0.968930i \(-0.420445\pi\)
0.247336 + 0.968930i \(0.420445\pi\)
\(314\) 0 0
\(315\) −526.261 −0.0941316
\(316\) 0 0
\(317\) 2249.25 0.398519 0.199260 0.979947i \(-0.436146\pi\)
0.199260 + 0.979947i \(0.436146\pi\)
\(318\) 0 0
\(319\) −512.832 −0.0900097
\(320\) 0 0
\(321\) 484.034 0.0841625
\(322\) 0 0
\(323\) 968.250 0.166795
\(324\) 0 0
\(325\) 576.768 0.0984411
\(326\) 0 0
\(327\) −938.483 −0.158710
\(328\) 0 0
\(329\) 1652.40 0.276899
\(330\) 0 0
\(331\) −3222.88 −0.535183 −0.267592 0.963532i \(-0.586228\pi\)
−0.267592 + 0.963532i \(0.586228\pi\)
\(332\) 0 0
\(333\) 479.012 0.0788280
\(334\) 0 0
\(335\) −2530.51 −0.412706
\(336\) 0 0
\(337\) 1060.25 0.171381 0.0856904 0.996322i \(-0.472690\pi\)
0.0856904 + 0.996322i \(0.472690\pi\)
\(338\) 0 0
\(339\) 924.362 0.148096
\(340\) 0 0
\(341\) 2444.81 0.388251
\(342\) 0 0
\(343\) 2692.23 0.423809
\(344\) 0 0
\(345\) −599.645 −0.0935762
\(346\) 0 0
\(347\) −8539.96 −1.32118 −0.660589 0.750748i \(-0.729693\pi\)
−0.660589 + 0.750748i \(0.729693\pi\)
\(348\) 0 0
\(349\) 9244.22 1.41786 0.708928 0.705280i \(-0.249179\pi\)
0.708928 + 0.705280i \(0.249179\pi\)
\(350\) 0 0
\(351\) 1106.04 0.168194
\(352\) 0 0
\(353\) 7893.63 1.19019 0.595093 0.803657i \(-0.297115\pi\)
0.595093 + 0.803657i \(0.297115\pi\)
\(354\) 0 0
\(355\) −5687.39 −0.850297
\(356\) 0 0
\(357\) −110.024 −0.0163111
\(358\) 0 0
\(359\) −5936.27 −0.872715 −0.436357 0.899773i \(-0.643732\pi\)
−0.436357 + 0.899773i \(0.643732\pi\)
\(360\) 0 0
\(361\) −5842.57 −0.851811
\(362\) 0 0
\(363\) 917.842 0.132711
\(364\) 0 0
\(365\) −3310.50 −0.474738
\(366\) 0 0
\(367\) 745.125 0.105982 0.0529908 0.998595i \(-0.483125\pi\)
0.0529908 + 0.998595i \(0.483125\pi\)
\(368\) 0 0
\(369\) 7852.78 1.10786
\(370\) 0 0
\(371\) −519.236 −0.0726615
\(372\) 0 0
\(373\) 2670.49 0.370705 0.185352 0.982672i \(-0.440657\pi\)
0.185352 + 0.982672i \(0.440657\pi\)
\(374\) 0 0
\(375\) 112.671 0.0155154
\(376\) 0 0
\(377\) −669.051 −0.0914002
\(378\) 0 0
\(379\) −6882.68 −0.932822 −0.466411 0.884568i \(-0.654453\pi\)
−0.466411 + 0.884568i \(0.654453\pi\)
\(380\) 0 0
\(381\) 807.454 0.108575
\(382\) 0 0
\(383\) −1148.23 −0.153190 −0.0765949 0.997062i \(-0.524405\pi\)
−0.0765949 + 0.997062i \(0.524405\pi\)
\(384\) 0 0
\(385\) 355.373 0.0470428
\(386\) 0 0
\(387\) −8480.62 −1.11394
\(388\) 0 0
\(389\) −9082.56 −1.18381 −0.591907 0.806006i \(-0.701625\pi\)
−0.591907 + 0.806006i \(0.701625\pi\)
\(390\) 0 0
\(391\) 4040.84 0.522645
\(392\) 0 0
\(393\) −1660.01 −0.213069
\(394\) 0 0
\(395\) 2078.43 0.264752
\(396\) 0 0
\(397\) 9812.01 1.24043 0.620215 0.784432i \(-0.287045\pi\)
0.620215 + 0.784432i \(0.287045\pi\)
\(398\) 0 0
\(399\) −115.498 −0.0144916
\(400\) 0 0
\(401\) 6347.24 0.790439 0.395220 0.918587i \(-0.370669\pi\)
0.395220 + 0.918587i \(0.370669\pi\)
\(402\) 0 0
\(403\) 3189.54 0.394249
\(404\) 0 0
\(405\) −3319.25 −0.407247
\(406\) 0 0
\(407\) −323.466 −0.0393947
\(408\) 0 0
\(409\) −6411.65 −0.775149 −0.387574 0.921838i \(-0.626687\pi\)
−0.387574 + 0.921838i \(0.626687\pi\)
\(410\) 0 0
\(411\) −2150.52 −0.258096
\(412\) 0 0
\(413\) −475.668 −0.0566733
\(414\) 0 0
\(415\) 1994.66 0.235937
\(416\) 0 0
\(417\) 932.686 0.109530
\(418\) 0 0
\(419\) −6703.98 −0.781649 −0.390825 0.920465i \(-0.627810\pi\)
−0.390825 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) 8331.97 0.964549 0.482275 0.876020i \(-0.339811\pi\)
0.482275 + 0.876020i \(0.339811\pi\)
\(422\) 0 0
\(423\) 10766.5 1.23755
\(424\) 0 0
\(425\) −759.257 −0.0866573
\(426\) 0 0
\(427\) −571.898 −0.0648152
\(428\) 0 0
\(429\) −367.739 −0.0413860
\(430\) 0 0
\(431\) −11127.3 −1.24358 −0.621790 0.783184i \(-0.713594\pi\)
−0.621790 + 0.783184i \(0.713594\pi\)
\(432\) 0 0
\(433\) −9783.53 −1.08583 −0.542917 0.839786i \(-0.682680\pi\)
−0.542917 + 0.839786i \(0.682680\pi\)
\(434\) 0 0
\(435\) −130.698 −0.0144057
\(436\) 0 0
\(437\) 4241.92 0.464344
\(438\) 0 0
\(439\) −12560.2 −1.36552 −0.682762 0.730641i \(-0.739221\pi\)
−0.682762 + 0.730641i \(0.739221\pi\)
\(440\) 0 0
\(441\) 8559.30 0.924231
\(442\) 0 0
\(443\) −3287.85 −0.352620 −0.176310 0.984335i \(-0.556416\pi\)
−0.176310 + 0.984335i \(0.556416\pi\)
\(444\) 0 0
\(445\) −1711.96 −0.182370
\(446\) 0 0
\(447\) −1715.79 −0.181553
\(448\) 0 0
\(449\) −10580.5 −1.11208 −0.556042 0.831154i \(-0.687681\pi\)
−0.556042 + 0.831154i \(0.687681\pi\)
\(450\) 0 0
\(451\) −5302.81 −0.553658
\(452\) 0 0
\(453\) −403.591 −0.0418595
\(454\) 0 0
\(455\) 463.626 0.0477695
\(456\) 0 0
\(457\) −12300.7 −1.25909 −0.629545 0.776964i \(-0.716758\pi\)
−0.629545 + 0.776964i \(0.716758\pi\)
\(458\) 0 0
\(459\) −1455.99 −0.148061
\(460\) 0 0
\(461\) −12356.9 −1.24841 −0.624204 0.781261i \(-0.714577\pi\)
−0.624204 + 0.781261i \(0.714577\pi\)
\(462\) 0 0
\(463\) 529.927 0.0531917 0.0265959 0.999646i \(-0.491533\pi\)
0.0265959 + 0.999646i \(0.491533\pi\)
\(464\) 0 0
\(465\) 623.071 0.0621381
\(466\) 0 0
\(467\) −10521.2 −1.04254 −0.521268 0.853393i \(-0.674541\pi\)
−0.521268 + 0.853393i \(0.674541\pi\)
\(468\) 0 0
\(469\) −2034.11 −0.200270
\(470\) 0 0
\(471\) 273.119 0.0267190
\(472\) 0 0
\(473\) 5726.78 0.556697
\(474\) 0 0
\(475\) −797.038 −0.0769907
\(476\) 0 0
\(477\) −3383.16 −0.324747
\(478\) 0 0
\(479\) 680.741 0.0649350 0.0324675 0.999473i \(-0.489663\pi\)
0.0324675 + 0.999473i \(0.489663\pi\)
\(480\) 0 0
\(481\) −422.001 −0.0400033
\(482\) 0 0
\(483\) −482.015 −0.0454088
\(484\) 0 0
\(485\) −8917.00 −0.834845
\(486\) 0 0
\(487\) 6618.28 0.615817 0.307909 0.951416i \(-0.400371\pi\)
0.307909 + 0.951416i \(0.400371\pi\)
\(488\) 0 0
\(489\) −2439.99 −0.225645
\(490\) 0 0
\(491\) 12459.3 1.14518 0.572588 0.819843i \(-0.305939\pi\)
0.572588 + 0.819843i \(0.305939\pi\)
\(492\) 0 0
\(493\) 880.738 0.0804593
\(494\) 0 0
\(495\) 2315.49 0.210249
\(496\) 0 0
\(497\) −4571.72 −0.412615
\(498\) 0 0
\(499\) −7196.22 −0.645585 −0.322792 0.946470i \(-0.604622\pi\)
−0.322792 + 0.946470i \(0.604622\pi\)
\(500\) 0 0
\(501\) 1270.86 0.113329
\(502\) 0 0
\(503\) −2636.26 −0.233688 −0.116844 0.993150i \(-0.537278\pi\)
−0.116844 + 0.993150i \(0.537278\pi\)
\(504\) 0 0
\(505\) −4795.97 −0.422609
\(506\) 0 0
\(507\) 1500.54 0.131442
\(508\) 0 0
\(509\) −15934.6 −1.38760 −0.693800 0.720168i \(-0.744065\pi\)
−0.693800 + 0.720168i \(0.744065\pi\)
\(510\) 0 0
\(511\) −2661.09 −0.230371
\(512\) 0 0
\(513\) −1528.44 −0.131545
\(514\) 0 0
\(515\) 2359.64 0.201900
\(516\) 0 0
\(517\) −7270.36 −0.618472
\(518\) 0 0
\(519\) −2957.80 −0.250160
\(520\) 0 0
\(521\) 12529.3 1.05358 0.526792 0.849994i \(-0.323395\pi\)
0.526792 + 0.849994i \(0.323395\pi\)
\(522\) 0 0
\(523\) 17960.6 1.50164 0.750822 0.660504i \(-0.229658\pi\)
0.750822 + 0.660504i \(0.229658\pi\)
\(524\) 0 0
\(525\) 90.5685 0.00752902
\(526\) 0 0
\(527\) −4198.71 −0.347056
\(528\) 0 0
\(529\) 5536.00 0.455001
\(530\) 0 0
\(531\) −3099.29 −0.253291
\(532\) 0 0
\(533\) −6918.15 −0.562211
\(534\) 0 0
\(535\) 2685.01 0.216978
\(536\) 0 0
\(537\) −2434.39 −0.195627
\(538\) 0 0
\(539\) −5779.91 −0.461889
\(540\) 0 0
\(541\) 1015.79 0.0807247 0.0403624 0.999185i \(-0.487149\pi\)
0.0403624 + 0.999185i \(0.487149\pi\)
\(542\) 0 0
\(543\) −1467.50 −0.115979
\(544\) 0 0
\(545\) −5205.90 −0.409167
\(546\) 0 0
\(547\) −9679.60 −0.756618 −0.378309 0.925679i \(-0.623494\pi\)
−0.378309 + 0.925679i \(0.623494\pi\)
\(548\) 0 0
\(549\) −3726.29 −0.289680
\(550\) 0 0
\(551\) 924.564 0.0714841
\(552\) 0 0
\(553\) 1670.71 0.128473
\(554\) 0 0
\(555\) −82.4371 −0.00630497
\(556\) 0 0
\(557\) −16777.3 −1.27626 −0.638130 0.769929i \(-0.720292\pi\)
−0.638130 + 0.769929i \(0.720292\pi\)
\(558\) 0 0
\(559\) 7471.27 0.565297
\(560\) 0 0
\(561\) 484.091 0.0364319
\(562\) 0 0
\(563\) −1960.91 −0.146789 −0.0733947 0.997303i \(-0.523383\pi\)
−0.0733947 + 0.997303i \(0.523383\pi\)
\(564\) 0 0
\(565\) 5127.57 0.381803
\(566\) 0 0
\(567\) −2668.13 −0.197621
\(568\) 0 0
\(569\) 14104.9 1.03920 0.519602 0.854409i \(-0.326080\pi\)
0.519602 + 0.854409i \(0.326080\pi\)
\(570\) 0 0
\(571\) −12669.5 −0.928547 −0.464273 0.885692i \(-0.653685\pi\)
−0.464273 + 0.885692i \(0.653685\pi\)
\(572\) 0 0
\(573\) 3919.95 0.285791
\(574\) 0 0
\(575\) −3326.32 −0.241247
\(576\) 0 0
\(577\) 26448.3 1.90824 0.954122 0.299418i \(-0.0967925\pi\)
0.954122 + 0.299418i \(0.0967925\pi\)
\(578\) 0 0
\(579\) −3373.23 −0.242119
\(580\) 0 0
\(581\) 1603.37 0.114491
\(582\) 0 0
\(583\) 2284.58 0.162294
\(584\) 0 0
\(585\) 3020.83 0.213497
\(586\) 0 0
\(587\) −19462.8 −1.36851 −0.684255 0.729243i \(-0.739872\pi\)
−0.684255 + 0.729243i \(0.739872\pi\)
\(588\) 0 0
\(589\) −4407.64 −0.308342
\(590\) 0 0
\(591\) −2813.95 −0.195855
\(592\) 0 0
\(593\) 5612.56 0.388668 0.194334 0.980935i \(-0.437745\pi\)
0.194334 + 0.980935i \(0.437745\pi\)
\(594\) 0 0
\(595\) −610.317 −0.0420513
\(596\) 0 0
\(597\) −1126.98 −0.0772602
\(598\) 0 0
\(599\) −13832.7 −0.943556 −0.471778 0.881717i \(-0.656388\pi\)
−0.471778 + 0.881717i \(0.656388\pi\)
\(600\) 0 0
\(601\) −22578.3 −1.53243 −0.766213 0.642586i \(-0.777861\pi\)
−0.766213 + 0.642586i \(0.777861\pi\)
\(602\) 0 0
\(603\) −13253.6 −0.895070
\(604\) 0 0
\(605\) 5091.40 0.342140
\(606\) 0 0
\(607\) 21512.4 1.43848 0.719242 0.694760i \(-0.244489\pi\)
0.719242 + 0.694760i \(0.244489\pi\)
\(608\) 0 0
\(609\) −105.059 −0.00699052
\(610\) 0 0
\(611\) −9485.05 −0.628026
\(612\) 0 0
\(613\) 2667.05 0.175728 0.0878641 0.996132i \(-0.471996\pi\)
0.0878641 + 0.996132i \(0.471996\pi\)
\(614\) 0 0
\(615\) −1351.45 −0.0886108
\(616\) 0 0
\(617\) −7892.93 −0.515004 −0.257502 0.966278i \(-0.582899\pi\)
−0.257502 + 0.966278i \(0.582899\pi\)
\(618\) 0 0
\(619\) −11950.9 −0.776002 −0.388001 0.921659i \(-0.626834\pi\)
−0.388001 + 0.921659i \(0.626834\pi\)
\(620\) 0 0
\(621\) −6378.73 −0.412189
\(622\) 0 0
\(623\) −1376.13 −0.0884969
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 508.179 0.0323680
\(628\) 0 0
\(629\) 555.521 0.0352148
\(630\) 0 0
\(631\) 18209.6 1.14883 0.574414 0.818565i \(-0.305230\pi\)
0.574414 + 0.818565i \(0.305230\pi\)
\(632\) 0 0
\(633\) −250.128 −0.0157057
\(634\) 0 0
\(635\) 4479.06 0.279915
\(636\) 0 0
\(637\) −7540.58 −0.469025
\(638\) 0 0
\(639\) −29787.8 −1.84411
\(640\) 0 0
\(641\) 21566.0 1.32887 0.664436 0.747345i \(-0.268672\pi\)
0.664436 + 0.747345i \(0.268672\pi\)
\(642\) 0 0
\(643\) 24611.9 1.50948 0.754742 0.656022i \(-0.227762\pi\)
0.754742 + 0.656022i \(0.227762\pi\)
\(644\) 0 0
\(645\) 1459.50 0.0890972
\(646\) 0 0
\(647\) 25091.9 1.52467 0.762337 0.647180i \(-0.224052\pi\)
0.762337 + 0.647180i \(0.224052\pi\)
\(648\) 0 0
\(649\) 2092.88 0.126584
\(650\) 0 0
\(651\) 500.846 0.0301532
\(652\) 0 0
\(653\) 20915.3 1.25341 0.626706 0.779256i \(-0.284403\pi\)
0.626706 + 0.779256i \(0.284403\pi\)
\(654\) 0 0
\(655\) −9208.29 −0.549309
\(656\) 0 0
\(657\) −17338.8 −1.02960
\(658\) 0 0
\(659\) −14530.2 −0.858902 −0.429451 0.903090i \(-0.641293\pi\)
−0.429451 + 0.903090i \(0.641293\pi\)
\(660\) 0 0
\(661\) 21454.4 1.26245 0.631225 0.775599i \(-0.282552\pi\)
0.631225 + 0.775599i \(0.282552\pi\)
\(662\) 0 0
\(663\) 631.554 0.0369948
\(664\) 0 0
\(665\) −640.686 −0.0373605
\(666\) 0 0
\(667\) 3858.53 0.223992
\(668\) 0 0
\(669\) −2834.50 −0.163809
\(670\) 0 0
\(671\) 2516.28 0.144769
\(672\) 0 0
\(673\) 3880.17 0.222243 0.111122 0.993807i \(-0.464556\pi\)
0.111122 + 0.993807i \(0.464556\pi\)
\(674\) 0 0
\(675\) 1198.53 0.0683431
\(676\) 0 0
\(677\) −913.324 −0.0518492 −0.0259246 0.999664i \(-0.508253\pi\)
−0.0259246 + 0.999664i \(0.508253\pi\)
\(678\) 0 0
\(679\) −7167.79 −0.405117
\(680\) 0 0
\(681\) 3914.63 0.220278
\(682\) 0 0
\(683\) 16766.1 0.939291 0.469645 0.882855i \(-0.344382\pi\)
0.469645 + 0.882855i \(0.344382\pi\)
\(684\) 0 0
\(685\) −11929.2 −0.665392
\(686\) 0 0
\(687\) 1848.15 0.102636
\(688\) 0 0
\(689\) 2980.50 0.164801
\(690\) 0 0
\(691\) 4872.52 0.268248 0.134124 0.990965i \(-0.457178\pi\)
0.134124 + 0.990965i \(0.457178\pi\)
\(692\) 0 0
\(693\) 1861.27 0.102026
\(694\) 0 0
\(695\) 5173.74 0.282376
\(696\) 0 0
\(697\) 9107.04 0.494912
\(698\) 0 0
\(699\) −4434.85 −0.239974
\(700\) 0 0
\(701\) 28386.1 1.52942 0.764712 0.644372i \(-0.222881\pi\)
0.764712 + 0.644372i \(0.222881\pi\)
\(702\) 0 0
\(703\) 583.164 0.0312866
\(704\) 0 0
\(705\) −1852.89 −0.0989841
\(706\) 0 0
\(707\) −3855.16 −0.205075
\(708\) 0 0
\(709\) −25742.0 −1.36356 −0.681778 0.731559i \(-0.738793\pi\)
−0.681778 + 0.731559i \(0.738793\pi\)
\(710\) 0 0
\(711\) 10885.8 0.574189
\(712\) 0 0
\(713\) −18394.6 −0.966176
\(714\) 0 0
\(715\) −2039.90 −0.106696
\(716\) 0 0
\(717\) −4778.94 −0.248916
\(718\) 0 0
\(719\) −4311.44 −0.223629 −0.111815 0.993729i \(-0.535666\pi\)
−0.111815 + 0.993729i \(0.535666\pi\)
\(720\) 0 0
\(721\) 1896.76 0.0979738
\(722\) 0 0
\(723\) −4417.46 −0.227230
\(724\) 0 0
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) −25991.9 −1.32598 −0.662990 0.748628i \(-0.730713\pi\)
−0.662990 + 0.748628i \(0.730713\pi\)
\(728\) 0 0
\(729\) −16217.9 −0.823954
\(730\) 0 0
\(731\) −9835.17 −0.497629
\(732\) 0 0
\(733\) −1690.71 −0.0851947 −0.0425973 0.999092i \(-0.513563\pi\)
−0.0425973 + 0.999092i \(0.513563\pi\)
\(734\) 0 0
\(735\) −1473.04 −0.0739236
\(736\) 0 0
\(737\) 8949.84 0.447316
\(738\) 0 0
\(739\) −19766.2 −0.983914 −0.491957 0.870620i \(-0.663718\pi\)
−0.491957 + 0.870620i \(0.663718\pi\)
\(740\) 0 0
\(741\) 662.981 0.0328680
\(742\) 0 0
\(743\) 4692.83 0.231714 0.115857 0.993266i \(-0.463039\pi\)
0.115857 + 0.993266i \(0.463039\pi\)
\(744\) 0 0
\(745\) −9517.74 −0.468058
\(746\) 0 0
\(747\) 10447.0 0.511696
\(748\) 0 0
\(749\) 2158.30 0.105291
\(750\) 0 0
\(751\) 3964.19 0.192617 0.0963084 0.995352i \(-0.469296\pi\)
0.0963084 + 0.995352i \(0.469296\pi\)
\(752\) 0 0
\(753\) 7142.27 0.345656
\(754\) 0 0
\(755\) −2238.78 −0.107917
\(756\) 0 0
\(757\) 33516.6 1.60922 0.804612 0.593801i \(-0.202373\pi\)
0.804612 + 0.593801i \(0.202373\pi\)
\(758\) 0 0
\(759\) 2120.81 0.101424
\(760\) 0 0
\(761\) −16250.5 −0.774085 −0.387042 0.922062i \(-0.626503\pi\)
−0.387042 + 0.922062i \(0.626503\pi\)
\(762\) 0 0
\(763\) −4184.68 −0.198552
\(764\) 0 0
\(765\) −3976.61 −0.187941
\(766\) 0 0
\(767\) 2730.41 0.128539
\(768\) 0 0
\(769\) 18777.8 0.880552 0.440276 0.897862i \(-0.354881\pi\)
0.440276 + 0.897862i \(0.354881\pi\)
\(770\) 0 0
\(771\) −2307.37 −0.107779
\(772\) 0 0
\(773\) −33581.7 −1.56255 −0.781274 0.624188i \(-0.785430\pi\)
−0.781274 + 0.624188i \(0.785430\pi\)
\(774\) 0 0
\(775\) 3456.26 0.160197
\(776\) 0 0
\(777\) −66.2658 −0.00305955
\(778\) 0 0
\(779\) 9560.21 0.439705
\(780\) 0 0
\(781\) 20115.0 0.921603
\(782\) 0 0
\(783\) −1390.30 −0.0634550
\(784\) 0 0
\(785\) 1515.03 0.0688838
\(786\) 0 0
\(787\) 5602.35 0.253751 0.126876 0.991919i \(-0.459505\pi\)
0.126876 + 0.991919i \(0.459505\pi\)
\(788\) 0 0
\(789\) −387.214 −0.0174717
\(790\) 0 0
\(791\) 4121.72 0.185274
\(792\) 0 0
\(793\) 3282.79 0.147005
\(794\) 0 0
\(795\) 582.236 0.0259746
\(796\) 0 0
\(797\) 26516.7 1.17851 0.589254 0.807948i \(-0.299422\pi\)
0.589254 + 0.807948i \(0.299422\pi\)
\(798\) 0 0
\(799\) 12486.1 0.552850
\(800\) 0 0
\(801\) −8966.40 −0.395521
\(802\) 0 0
\(803\) 11708.5 0.514550
\(804\) 0 0
\(805\) −2673.81 −0.117067
\(806\) 0 0
\(807\) −277.106 −0.0120875
\(808\) 0 0
\(809\) −30041.4 −1.30556 −0.652782 0.757546i \(-0.726398\pi\)
−0.652782 + 0.757546i \(0.726398\pi\)
\(810\) 0 0
\(811\) −17845.8 −0.772690 −0.386345 0.922354i \(-0.626263\pi\)
−0.386345 + 0.922354i \(0.626263\pi\)
\(812\) 0 0
\(813\) −1475.22 −0.0636386
\(814\) 0 0
\(815\) −13535.0 −0.581730
\(816\) 0 0
\(817\) −10324.6 −0.442119
\(818\) 0 0
\(819\) 2428.25 0.103602
\(820\) 0 0
\(821\) −31288.0 −1.33004 −0.665018 0.746827i \(-0.731576\pi\)
−0.665018 + 0.746827i \(0.731576\pi\)
\(822\) 0 0
\(823\) 14715.6 0.623274 0.311637 0.950201i \(-0.399123\pi\)
0.311637 + 0.950201i \(0.399123\pi\)
\(824\) 0 0
\(825\) −398.491 −0.0168166
\(826\) 0 0
\(827\) −9760.47 −0.410405 −0.205202 0.978720i \(-0.565785\pi\)
−0.205202 + 0.978720i \(0.565785\pi\)
\(828\) 0 0
\(829\) −3813.55 −0.159771 −0.0798855 0.996804i \(-0.525455\pi\)
−0.0798855 + 0.996804i \(0.525455\pi\)
\(830\) 0 0
\(831\) −1208.52 −0.0504488
\(832\) 0 0
\(833\) 9926.41 0.412881
\(834\) 0 0
\(835\) 7049.64 0.292171
\(836\) 0 0
\(837\) 6627.92 0.273709
\(838\) 0 0
\(839\) −899.368 −0.0370079 −0.0185040 0.999829i \(-0.505890\pi\)
−0.0185040 + 0.999829i \(0.505890\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) 1281.62 0.0523623
\(844\) 0 0
\(845\) 8323.71 0.338869
\(846\) 0 0
\(847\) 4092.65 0.166027
\(848\) 0 0
\(849\) 5407.45 0.218591
\(850\) 0 0
\(851\) 2433.75 0.0980350
\(852\) 0 0
\(853\) 8871.64 0.356107 0.178053 0.984021i \(-0.443020\pi\)
0.178053 + 0.984021i \(0.443020\pi\)
\(854\) 0 0
\(855\) −4174.49 −0.166976
\(856\) 0 0
\(857\) −35747.7 −1.42488 −0.712439 0.701735i \(-0.752409\pi\)
−0.712439 + 0.701735i \(0.752409\pi\)
\(858\) 0 0
\(859\) 11155.1 0.443080 0.221540 0.975151i \(-0.428892\pi\)
0.221540 + 0.975151i \(0.428892\pi\)
\(860\) 0 0
\(861\) −1086.34 −0.0429993
\(862\) 0 0
\(863\) 8445.47 0.333125 0.166563 0.986031i \(-0.446733\pi\)
0.166563 + 0.986031i \(0.446733\pi\)
\(864\) 0 0
\(865\) −16407.3 −0.644932
\(866\) 0 0
\(867\) 3597.03 0.140901
\(868\) 0 0
\(869\) −7350.92 −0.286954
\(870\) 0 0
\(871\) 11676.1 0.454226
\(872\) 0 0
\(873\) −46702.8 −1.81060
\(874\) 0 0
\(875\) 502.397 0.0194104
\(876\) 0 0
\(877\) 36481.5 1.40467 0.702333 0.711849i \(-0.252142\pi\)
0.702333 + 0.711849i \(0.252142\pi\)
\(878\) 0 0
\(879\) 2398.58 0.0920387
\(880\) 0 0
\(881\) 11301.9 0.432203 0.216102 0.976371i \(-0.430666\pi\)
0.216102 + 0.976371i \(0.430666\pi\)
\(882\) 0 0
\(883\) 34410.2 1.31143 0.655717 0.755007i \(-0.272366\pi\)
0.655717 + 0.755007i \(0.272366\pi\)
\(884\) 0 0
\(885\) 533.381 0.0202592
\(886\) 0 0
\(887\) 27906.7 1.05639 0.528194 0.849124i \(-0.322869\pi\)
0.528194 + 0.849124i \(0.322869\pi\)
\(888\) 0 0
\(889\) 3600.43 0.135832
\(890\) 0 0
\(891\) 11739.5 0.441399
\(892\) 0 0
\(893\) 13107.4 0.491179
\(894\) 0 0
\(895\) −13503.9 −0.504342
\(896\) 0 0
\(897\) 2766.85 0.102990
\(898\) 0 0
\(899\) −4009.27 −0.148739
\(900\) 0 0
\(901\) −3923.53 −0.145074
\(902\) 0 0
\(903\) 1173.20 0.0432353
\(904\) 0 0
\(905\) −8140.44 −0.299003
\(906\) 0 0
\(907\) 1791.73 0.0655936 0.0327968 0.999462i \(-0.489559\pi\)
0.0327968 + 0.999462i \(0.489559\pi\)
\(908\) 0 0
\(909\) −25118.9 −0.916547
\(910\) 0 0
\(911\) 36745.9 1.33638 0.668192 0.743989i \(-0.267068\pi\)
0.668192 + 0.743989i \(0.267068\pi\)
\(912\) 0 0
\(913\) −7054.65 −0.255723
\(914\) 0 0
\(915\) 641.287 0.0231697
\(916\) 0 0
\(917\) −7401.94 −0.266558
\(918\) 0 0
\(919\) 39360.9 1.41284 0.706419 0.707794i \(-0.250310\pi\)
0.706419 + 0.707794i \(0.250310\pi\)
\(920\) 0 0
\(921\) −7607.20 −0.272167
\(922\) 0 0
\(923\) 26242.4 0.935840
\(924\) 0 0
\(925\) −457.290 −0.0162547
\(926\) 0 0
\(927\) 12358.6 0.437876
\(928\) 0 0
\(929\) 25334.7 0.894732 0.447366 0.894351i \(-0.352362\pi\)
0.447366 + 0.894351i \(0.352362\pi\)
\(930\) 0 0
\(931\) 10420.4 0.366824
\(932\) 0 0
\(933\) −5091.17 −0.178647
\(934\) 0 0
\(935\) 2685.32 0.0939244
\(936\) 0 0
\(937\) 31989.9 1.11533 0.557665 0.830066i \(-0.311697\pi\)
0.557665 + 0.830066i \(0.311697\pi\)
\(938\) 0 0
\(939\) −2469.07 −0.0858095
\(940\) 0 0
\(941\) 28945.4 1.00276 0.501379 0.865228i \(-0.332826\pi\)
0.501379 + 0.865228i \(0.332826\pi\)
\(942\) 0 0
\(943\) 39898.1 1.37780
\(944\) 0 0
\(945\) 963.423 0.0331642
\(946\) 0 0
\(947\) 20241.3 0.694566 0.347283 0.937760i \(-0.387104\pi\)
0.347283 + 0.937760i \(0.387104\pi\)
\(948\) 0 0
\(949\) 15275.1 0.522499
\(950\) 0 0
\(951\) −2027.40 −0.0691303
\(952\) 0 0
\(953\) 31028.1 1.05467 0.527335 0.849658i \(-0.323191\pi\)
0.527335 + 0.849658i \(0.323191\pi\)
\(954\) 0 0
\(955\) 21744.5 0.736791
\(956\) 0 0
\(957\) 462.249 0.0156138
\(958\) 0 0
\(959\) −9589.14 −0.322888
\(960\) 0 0
\(961\) −10677.8 −0.358423
\(962\) 0 0
\(963\) 14062.8 0.470577
\(964\) 0 0
\(965\) −18711.8 −0.624201
\(966\) 0 0
\(967\) −33984.7 −1.13017 −0.565086 0.825032i \(-0.691157\pi\)
−0.565086 + 0.825032i \(0.691157\pi\)
\(968\) 0 0
\(969\) −872.747 −0.0289336
\(970\) 0 0
\(971\) −49106.1 −1.62295 −0.811477 0.584384i \(-0.801336\pi\)
−0.811477 + 0.584384i \(0.801336\pi\)
\(972\) 0 0
\(973\) 4158.83 0.137026
\(974\) 0 0
\(975\) −519.879 −0.0170763
\(976\) 0 0
\(977\) −4067.12 −0.133182 −0.0665909 0.997780i \(-0.521212\pi\)
−0.0665909 + 0.997780i \(0.521212\pi\)
\(978\) 0 0
\(979\) 6054.81 0.197664
\(980\) 0 0
\(981\) −27265.9 −0.887395
\(982\) 0 0
\(983\) 20019.6 0.649570 0.324785 0.945788i \(-0.394708\pi\)
0.324785 + 0.945788i \(0.394708\pi\)
\(984\) 0 0
\(985\) −15609.4 −0.504930
\(986\) 0 0
\(987\) −1489.42 −0.0480330
\(988\) 0 0
\(989\) −43088.0 −1.38536
\(990\) 0 0
\(991\) 36059.4 1.15587 0.577933 0.816084i \(-0.303859\pi\)
0.577933 + 0.816084i \(0.303859\pi\)
\(992\) 0 0
\(993\) 2904.99 0.0928370
\(994\) 0 0
\(995\) −6251.54 −0.199183
\(996\) 0 0
\(997\) −2876.50 −0.0913739 −0.0456870 0.998956i \(-0.514548\pi\)
−0.0456870 + 0.998956i \(0.514548\pi\)
\(998\) 0 0
\(999\) −876.925 −0.0277725
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.4.a.g.1.5 11
4.3 odd 2 2320.4.a.bb.1.7 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.4.a.g.1.5 11 1.1 even 1 trivial
2320.4.a.bb.1.7 11 4.3 odd 2