Properties

Label 1160.4.a.g.1.7
Level $1160$
Weight $4$
Character 1160.1
Self dual yes
Analytic conductor $68.442$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,4,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.4422156067\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 2 x^{10} - 179 x^{9} + 370 x^{8} + 10353 x^{7} - 19394 x^{6} - 210392 x^{5} + 267796 x^{4} + \cdots + 567808 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.848128\) of defining polynomial
Character \(\chi\) \(=\) 1160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.848128 q^{3} -5.00000 q^{5} +28.0939 q^{7} -26.2807 q^{9} -69.7247 q^{11} -38.8297 q^{13} -4.24064 q^{15} -13.6867 q^{17} -21.6449 q^{19} +23.8273 q^{21} +111.788 q^{23} +25.0000 q^{25} -45.1888 q^{27} -29.0000 q^{29} +255.526 q^{31} -59.1355 q^{33} -140.470 q^{35} -188.168 q^{37} -32.9325 q^{39} +469.212 q^{41} +437.992 q^{43} +131.403 q^{45} +309.302 q^{47} +446.270 q^{49} -11.6081 q^{51} -497.585 q^{53} +348.624 q^{55} -18.3576 q^{57} +887.837 q^{59} -415.947 q^{61} -738.328 q^{63} +194.148 q^{65} -295.924 q^{67} +94.8106 q^{69} -438.592 q^{71} -20.8671 q^{73} +21.2032 q^{75} -1958.84 q^{77} +176.943 q^{79} +671.252 q^{81} +709.660 q^{83} +68.4337 q^{85} -24.5957 q^{87} -13.1512 q^{89} -1090.88 q^{91} +216.718 q^{93} +108.225 q^{95} +493.631 q^{97} +1832.41 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 2 q^{3} - 55 q^{5} + 56 q^{7} + 65 q^{9} - 8 q^{11} + 16 q^{13} - 10 q^{15} + 64 q^{17} + 160 q^{19} - 48 q^{21} + 140 q^{23} + 275 q^{25} - 136 q^{27} - 319 q^{29} - 144 q^{31} - 424 q^{33} - 280 q^{35}+ \cdots + 6884 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.848128 0.163222 0.0816111 0.996664i \(-0.473993\pi\)
0.0816111 + 0.996664i \(0.473993\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 28.0939 1.51693 0.758465 0.651713i \(-0.225949\pi\)
0.758465 + 0.651713i \(0.225949\pi\)
\(8\) 0 0
\(9\) −26.2807 −0.973359
\(10\) 0 0
\(11\) −69.7247 −1.91116 −0.955582 0.294727i \(-0.904771\pi\)
−0.955582 + 0.294727i \(0.904771\pi\)
\(12\) 0 0
\(13\) −38.8297 −0.828416 −0.414208 0.910182i \(-0.635941\pi\)
−0.414208 + 0.910182i \(0.635941\pi\)
\(14\) 0 0
\(15\) −4.24064 −0.0729952
\(16\) 0 0
\(17\) −13.6867 −0.195266 −0.0976330 0.995222i \(-0.531127\pi\)
−0.0976330 + 0.995222i \(0.531127\pi\)
\(18\) 0 0
\(19\) −21.6449 −0.261352 −0.130676 0.991425i \(-0.541715\pi\)
−0.130676 + 0.991425i \(0.541715\pi\)
\(20\) 0 0
\(21\) 23.8273 0.247597
\(22\) 0 0
\(23\) 111.788 1.01345 0.506727 0.862107i \(-0.330855\pi\)
0.506727 + 0.862107i \(0.330855\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −45.1888 −0.322096
\(28\) 0 0
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) 255.526 1.48044 0.740222 0.672363i \(-0.234720\pi\)
0.740222 + 0.672363i \(0.234720\pi\)
\(32\) 0 0
\(33\) −59.1355 −0.311944
\(34\) 0 0
\(35\) −140.470 −0.678392
\(36\) 0 0
\(37\) −188.168 −0.836069 −0.418035 0.908431i \(-0.637281\pi\)
−0.418035 + 0.908431i \(0.637281\pi\)
\(38\) 0 0
\(39\) −32.9325 −0.135216
\(40\) 0 0
\(41\) 469.212 1.78728 0.893642 0.448780i \(-0.148141\pi\)
0.893642 + 0.448780i \(0.148141\pi\)
\(42\) 0 0
\(43\) 437.992 1.55333 0.776665 0.629914i \(-0.216910\pi\)
0.776665 + 0.629914i \(0.216910\pi\)
\(44\) 0 0
\(45\) 131.403 0.435299
\(46\) 0 0
\(47\) 309.302 0.959922 0.479961 0.877290i \(-0.340651\pi\)
0.479961 + 0.877290i \(0.340651\pi\)
\(48\) 0 0
\(49\) 446.270 1.30108
\(50\) 0 0
\(51\) −11.6081 −0.0318717
\(52\) 0 0
\(53\) −497.585 −1.28960 −0.644798 0.764353i \(-0.723058\pi\)
−0.644798 + 0.764353i \(0.723058\pi\)
\(54\) 0 0
\(55\) 348.624 0.854698
\(56\) 0 0
\(57\) −18.3576 −0.0426584
\(58\) 0 0
\(59\) 887.837 1.95909 0.979547 0.201217i \(-0.0644898\pi\)
0.979547 + 0.201217i \(0.0644898\pi\)
\(60\) 0 0
\(61\) −415.947 −0.873057 −0.436529 0.899690i \(-0.643792\pi\)
−0.436529 + 0.899690i \(0.643792\pi\)
\(62\) 0 0
\(63\) −738.328 −1.47652
\(64\) 0 0
\(65\) 194.148 0.370479
\(66\) 0 0
\(67\) −295.924 −0.539594 −0.269797 0.962917i \(-0.586957\pi\)
−0.269797 + 0.962917i \(0.586957\pi\)
\(68\) 0 0
\(69\) 94.8106 0.165418
\(70\) 0 0
\(71\) −438.592 −0.733117 −0.366559 0.930395i \(-0.619464\pi\)
−0.366559 + 0.930395i \(0.619464\pi\)
\(72\) 0 0
\(73\) −20.8671 −0.0334563 −0.0167281 0.999860i \(-0.505325\pi\)
−0.0167281 + 0.999860i \(0.505325\pi\)
\(74\) 0 0
\(75\) 21.2032 0.0326444
\(76\) 0 0
\(77\) −1958.84 −2.89910
\(78\) 0 0
\(79\) 176.943 0.251996 0.125998 0.992030i \(-0.459787\pi\)
0.125998 + 0.992030i \(0.459787\pi\)
\(80\) 0 0
\(81\) 671.252 0.920785
\(82\) 0 0
\(83\) 709.660 0.938497 0.469249 0.883066i \(-0.344525\pi\)
0.469249 + 0.883066i \(0.344525\pi\)
\(84\) 0 0
\(85\) 68.4337 0.0873256
\(86\) 0 0
\(87\) −24.5957 −0.0303096
\(88\) 0 0
\(89\) −13.1512 −0.0156632 −0.00783162 0.999969i \(-0.502493\pi\)
−0.00783162 + 0.999969i \(0.502493\pi\)
\(90\) 0 0
\(91\) −1090.88 −1.25665
\(92\) 0 0
\(93\) 216.718 0.241641
\(94\) 0 0
\(95\) 108.225 0.116880
\(96\) 0 0
\(97\) 493.631 0.516707 0.258354 0.966050i \(-0.416820\pi\)
0.258354 + 0.966050i \(0.416820\pi\)
\(98\) 0 0
\(99\) 1832.41 1.86025
\(100\) 0 0
\(101\) −1187.45 −1.16986 −0.584930 0.811084i \(-0.698878\pi\)
−0.584930 + 0.811084i \(0.698878\pi\)
\(102\) 0 0
\(103\) 1048.91 1.00342 0.501712 0.865035i \(-0.332704\pi\)
0.501712 + 0.865035i \(0.332704\pi\)
\(104\) 0 0
\(105\) −119.136 −0.110729
\(106\) 0 0
\(107\) −1328.40 −1.20020 −0.600099 0.799925i \(-0.704872\pi\)
−0.600099 + 0.799925i \(0.704872\pi\)
\(108\) 0 0
\(109\) 2217.54 1.94864 0.974321 0.225161i \(-0.0722909\pi\)
0.974321 + 0.225161i \(0.0722909\pi\)
\(110\) 0 0
\(111\) −159.590 −0.136465
\(112\) 0 0
\(113\) −493.891 −0.411162 −0.205581 0.978640i \(-0.565908\pi\)
−0.205581 + 0.978640i \(0.565908\pi\)
\(114\) 0 0
\(115\) −558.941 −0.453230
\(116\) 0 0
\(117\) 1020.47 0.806346
\(118\) 0 0
\(119\) −384.514 −0.296205
\(120\) 0 0
\(121\) 3530.54 2.65254
\(122\) 0 0
\(123\) 397.952 0.291725
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −2351.55 −1.64304 −0.821522 0.570177i \(-0.806875\pi\)
−0.821522 + 0.570177i \(0.806875\pi\)
\(128\) 0 0
\(129\) 371.473 0.253538
\(130\) 0 0
\(131\) 1678.33 1.11936 0.559682 0.828707i \(-0.310923\pi\)
0.559682 + 0.828707i \(0.310923\pi\)
\(132\) 0 0
\(133\) −608.091 −0.396452
\(134\) 0 0
\(135\) 225.944 0.144046
\(136\) 0 0
\(137\) 1220.12 0.760889 0.380445 0.924804i \(-0.375771\pi\)
0.380445 + 0.924804i \(0.375771\pi\)
\(138\) 0 0
\(139\) −1171.97 −0.715143 −0.357572 0.933886i \(-0.616395\pi\)
−0.357572 + 0.933886i \(0.616395\pi\)
\(140\) 0 0
\(141\) 262.328 0.156681
\(142\) 0 0
\(143\) 2707.39 1.58324
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 0 0
\(147\) 378.494 0.212365
\(148\) 0 0
\(149\) 2139.45 1.17631 0.588157 0.808746i \(-0.299854\pi\)
0.588157 + 0.808746i \(0.299854\pi\)
\(150\) 0 0
\(151\) 2623.32 1.41379 0.706897 0.707316i \(-0.250094\pi\)
0.706897 + 0.707316i \(0.250094\pi\)
\(152\) 0 0
\(153\) 359.697 0.190064
\(154\) 0 0
\(155\) −1277.63 −0.662075
\(156\) 0 0
\(157\) 2750.34 1.39810 0.699048 0.715074i \(-0.253607\pi\)
0.699048 + 0.715074i \(0.253607\pi\)
\(158\) 0 0
\(159\) −422.016 −0.210491
\(160\) 0 0
\(161\) 3140.57 1.53734
\(162\) 0 0
\(163\) 2207.46 1.06075 0.530374 0.847764i \(-0.322051\pi\)
0.530374 + 0.847764i \(0.322051\pi\)
\(164\) 0 0
\(165\) 295.677 0.139506
\(166\) 0 0
\(167\) 252.313 0.116914 0.0584568 0.998290i \(-0.481382\pi\)
0.0584568 + 0.998290i \(0.481382\pi\)
\(168\) 0 0
\(169\) −689.257 −0.313727
\(170\) 0 0
\(171\) 568.843 0.254389
\(172\) 0 0
\(173\) 4.51450 0.00198400 0.000991998 1.00000i \(-0.499684\pi\)
0.000991998 1.00000i \(0.499684\pi\)
\(174\) 0 0
\(175\) 702.349 0.303386
\(176\) 0 0
\(177\) 752.999 0.319768
\(178\) 0 0
\(179\) −3397.76 −1.41878 −0.709388 0.704818i \(-0.751028\pi\)
−0.709388 + 0.704818i \(0.751028\pi\)
\(180\) 0 0
\(181\) 2429.13 0.997546 0.498773 0.866733i \(-0.333784\pi\)
0.498773 + 0.866733i \(0.333784\pi\)
\(182\) 0 0
\(183\) −352.776 −0.142502
\(184\) 0 0
\(185\) 940.838 0.373902
\(186\) 0 0
\(187\) 954.304 0.373185
\(188\) 0 0
\(189\) −1269.53 −0.488597
\(190\) 0 0
\(191\) −4256.62 −1.61256 −0.806278 0.591537i \(-0.798521\pi\)
−0.806278 + 0.591537i \(0.798521\pi\)
\(192\) 0 0
\(193\) 2983.93 1.11289 0.556445 0.830884i \(-0.312165\pi\)
0.556445 + 0.830884i \(0.312165\pi\)
\(194\) 0 0
\(195\) 164.663 0.0604704
\(196\) 0 0
\(197\) −3711.23 −1.34221 −0.671103 0.741364i \(-0.734179\pi\)
−0.671103 + 0.741364i \(0.734179\pi\)
\(198\) 0 0
\(199\) 1399.38 0.498490 0.249245 0.968440i \(-0.419818\pi\)
0.249245 + 0.968440i \(0.419818\pi\)
\(200\) 0 0
\(201\) −250.981 −0.0880738
\(202\) 0 0
\(203\) −814.725 −0.281687
\(204\) 0 0
\(205\) −2346.06 −0.799298
\(206\) 0 0
\(207\) −2937.87 −0.986454
\(208\) 0 0
\(209\) 1509.18 0.499486
\(210\) 0 0
\(211\) −4315.78 −1.40811 −0.704053 0.710148i \(-0.748628\pi\)
−0.704053 + 0.710148i \(0.748628\pi\)
\(212\) 0 0
\(213\) −371.982 −0.119661
\(214\) 0 0
\(215\) −2189.96 −0.694670
\(216\) 0 0
\(217\) 7178.72 2.24573
\(218\) 0 0
\(219\) −17.6980 −0.00546081
\(220\) 0 0
\(221\) 531.451 0.161761
\(222\) 0 0
\(223\) 3871.79 1.16266 0.581332 0.813666i \(-0.302532\pi\)
0.581332 + 0.813666i \(0.302532\pi\)
\(224\) 0 0
\(225\) −657.017 −0.194672
\(226\) 0 0
\(227\) −2029.62 −0.593440 −0.296720 0.954964i \(-0.595893\pi\)
−0.296720 + 0.954964i \(0.595893\pi\)
\(228\) 0 0
\(229\) 5622.78 1.62255 0.811274 0.584666i \(-0.198775\pi\)
0.811274 + 0.584666i \(0.198775\pi\)
\(230\) 0 0
\(231\) −1661.35 −0.473198
\(232\) 0 0
\(233\) −4229.06 −1.18908 −0.594539 0.804067i \(-0.702665\pi\)
−0.594539 + 0.804067i \(0.702665\pi\)
\(234\) 0 0
\(235\) −1546.51 −0.429290
\(236\) 0 0
\(237\) 150.071 0.0411314
\(238\) 0 0
\(239\) −944.259 −0.255561 −0.127780 0.991802i \(-0.540785\pi\)
−0.127780 + 0.991802i \(0.540785\pi\)
\(240\) 0 0
\(241\) 1288.24 0.344328 0.172164 0.985068i \(-0.444924\pi\)
0.172164 + 0.985068i \(0.444924\pi\)
\(242\) 0 0
\(243\) 1789.41 0.472389
\(244\) 0 0
\(245\) −2231.35 −0.581860
\(246\) 0 0
\(247\) 840.464 0.216508
\(248\) 0 0
\(249\) 601.882 0.153184
\(250\) 0 0
\(251\) 4513.45 1.13501 0.567503 0.823371i \(-0.307910\pi\)
0.567503 + 0.823371i \(0.307910\pi\)
\(252\) 0 0
\(253\) −7794.40 −1.93688
\(254\) 0 0
\(255\) 58.0405 0.0142535
\(256\) 0 0
\(257\) −1762.18 −0.427711 −0.213855 0.976865i \(-0.568602\pi\)
−0.213855 + 0.976865i \(0.568602\pi\)
\(258\) 0 0
\(259\) −5286.37 −1.26826
\(260\) 0 0
\(261\) 762.140 0.180748
\(262\) 0 0
\(263\) 223.502 0.0524019 0.0262010 0.999657i \(-0.491659\pi\)
0.0262010 + 0.999657i \(0.491659\pi\)
\(264\) 0 0
\(265\) 2487.92 0.576725
\(266\) 0 0
\(267\) −11.1539 −0.00255659
\(268\) 0 0
\(269\) −7893.90 −1.78922 −0.894609 0.446850i \(-0.852546\pi\)
−0.894609 + 0.446850i \(0.852546\pi\)
\(270\) 0 0
\(271\) 5146.81 1.15368 0.576838 0.816858i \(-0.304286\pi\)
0.576838 + 0.816858i \(0.304286\pi\)
\(272\) 0 0
\(273\) −925.204 −0.205113
\(274\) 0 0
\(275\) −1743.12 −0.382233
\(276\) 0 0
\(277\) −0.499889 −0.000108431 0 −5.42156e−5 1.00000i \(-0.500017\pi\)
−5.42156e−5 1.00000i \(0.500017\pi\)
\(278\) 0 0
\(279\) −6715.39 −1.44100
\(280\) 0 0
\(281\) −2273.99 −0.482758 −0.241379 0.970431i \(-0.577600\pi\)
−0.241379 + 0.970431i \(0.577600\pi\)
\(282\) 0 0
\(283\) 6710.84 1.40960 0.704802 0.709404i \(-0.251036\pi\)
0.704802 + 0.709404i \(0.251036\pi\)
\(284\) 0 0
\(285\) 91.7882 0.0190774
\(286\) 0 0
\(287\) 13182.0 2.71119
\(288\) 0 0
\(289\) −4725.67 −0.961871
\(290\) 0 0
\(291\) 418.662 0.0843381
\(292\) 0 0
\(293\) 8246.25 1.64420 0.822101 0.569342i \(-0.192802\pi\)
0.822101 + 0.569342i \(0.192802\pi\)
\(294\) 0 0
\(295\) −4439.18 −0.876133
\(296\) 0 0
\(297\) 3150.78 0.615578
\(298\) 0 0
\(299\) −4340.69 −0.839561
\(300\) 0 0
\(301\) 12304.9 2.35629
\(302\) 0 0
\(303\) −1007.11 −0.190947
\(304\) 0 0
\(305\) 2079.73 0.390443
\(306\) 0 0
\(307\) −3348.40 −0.622486 −0.311243 0.950330i \(-0.600745\pi\)
−0.311243 + 0.950330i \(0.600745\pi\)
\(308\) 0 0
\(309\) 889.613 0.163781
\(310\) 0 0
\(311\) −3183.02 −0.580361 −0.290181 0.956972i \(-0.593715\pi\)
−0.290181 + 0.956972i \(0.593715\pi\)
\(312\) 0 0
\(313\) 194.603 0.0351425 0.0175713 0.999846i \(-0.494407\pi\)
0.0175713 + 0.999846i \(0.494407\pi\)
\(314\) 0 0
\(315\) 3691.64 0.660319
\(316\) 0 0
\(317\) 7850.74 1.39098 0.695491 0.718535i \(-0.255187\pi\)
0.695491 + 0.718535i \(0.255187\pi\)
\(318\) 0 0
\(319\) 2022.02 0.354894
\(320\) 0 0
\(321\) −1126.65 −0.195899
\(322\) 0 0
\(323\) 296.248 0.0510331
\(324\) 0 0
\(325\) −970.742 −0.165683
\(326\) 0 0
\(327\) 1880.76 0.318062
\(328\) 0 0
\(329\) 8689.52 1.45614
\(330\) 0 0
\(331\) 10688.8 1.77495 0.887476 0.460853i \(-0.152456\pi\)
0.887476 + 0.460853i \(0.152456\pi\)
\(332\) 0 0
\(333\) 4945.17 0.813795
\(334\) 0 0
\(335\) 1479.62 0.241314
\(336\) 0 0
\(337\) 8950.21 1.44673 0.723367 0.690464i \(-0.242594\pi\)
0.723367 + 0.690464i \(0.242594\pi\)
\(338\) 0 0
\(339\) −418.882 −0.0671108
\(340\) 0 0
\(341\) −17816.5 −2.82937
\(342\) 0 0
\(343\) 2901.26 0.456715
\(344\) 0 0
\(345\) −474.053 −0.0739773
\(346\) 0 0
\(347\) 8407.47 1.30068 0.650341 0.759642i \(-0.274626\pi\)
0.650341 + 0.759642i \(0.274626\pi\)
\(348\) 0 0
\(349\) 3592.04 0.550939 0.275469 0.961310i \(-0.411167\pi\)
0.275469 + 0.961310i \(0.411167\pi\)
\(350\) 0 0
\(351\) 1754.67 0.266830
\(352\) 0 0
\(353\) −2530.91 −0.381606 −0.190803 0.981628i \(-0.561109\pi\)
−0.190803 + 0.981628i \(0.561109\pi\)
\(354\) 0 0
\(355\) 2192.96 0.327860
\(356\) 0 0
\(357\) −326.117 −0.0483472
\(358\) 0 0
\(359\) −2373.47 −0.348932 −0.174466 0.984663i \(-0.555820\pi\)
−0.174466 + 0.984663i \(0.555820\pi\)
\(360\) 0 0
\(361\) −6390.50 −0.931695
\(362\) 0 0
\(363\) 2994.35 0.432954
\(364\) 0 0
\(365\) 104.335 0.0149621
\(366\) 0 0
\(367\) −12847.3 −1.82731 −0.913656 0.406488i \(-0.866753\pi\)
−0.913656 + 0.406488i \(0.866753\pi\)
\(368\) 0 0
\(369\) −12331.2 −1.73967
\(370\) 0 0
\(371\) −13979.1 −1.95623
\(372\) 0 0
\(373\) 3451.72 0.479151 0.239575 0.970878i \(-0.422992\pi\)
0.239575 + 0.970878i \(0.422992\pi\)
\(374\) 0 0
\(375\) −106.016 −0.0145990
\(376\) 0 0
\(377\) 1126.06 0.153833
\(378\) 0 0
\(379\) −242.865 −0.0329160 −0.0164580 0.999865i \(-0.505239\pi\)
−0.0164580 + 0.999865i \(0.505239\pi\)
\(380\) 0 0
\(381\) −1994.42 −0.268181
\(382\) 0 0
\(383\) −6607.94 −0.881593 −0.440797 0.897607i \(-0.645304\pi\)
−0.440797 + 0.897607i \(0.645304\pi\)
\(384\) 0 0
\(385\) 9794.21 1.29652
\(386\) 0 0
\(387\) −11510.7 −1.51195
\(388\) 0 0
\(389\) −198.661 −0.0258933 −0.0129467 0.999916i \(-0.504121\pi\)
−0.0129467 + 0.999916i \(0.504121\pi\)
\(390\) 0 0
\(391\) −1530.01 −0.197893
\(392\) 0 0
\(393\) 1423.44 0.182705
\(394\) 0 0
\(395\) −884.717 −0.112696
\(396\) 0 0
\(397\) 171.465 0.0216766 0.0108383 0.999941i \(-0.496550\pi\)
0.0108383 + 0.999941i \(0.496550\pi\)
\(398\) 0 0
\(399\) −515.739 −0.0647098
\(400\) 0 0
\(401\) −2380.44 −0.296443 −0.148222 0.988954i \(-0.547355\pi\)
−0.148222 + 0.988954i \(0.547355\pi\)
\(402\) 0 0
\(403\) −9921.97 −1.22642
\(404\) 0 0
\(405\) −3356.26 −0.411788
\(406\) 0 0
\(407\) 13119.9 1.59787
\(408\) 0 0
\(409\) −7.26717 −0.000878578 0 −0.000439289 1.00000i \(-0.500140\pi\)
−0.000439289 1.00000i \(0.500140\pi\)
\(410\) 0 0
\(411\) 1034.82 0.124194
\(412\) 0 0
\(413\) 24942.8 2.97181
\(414\) 0 0
\(415\) −3548.30 −0.419709
\(416\) 0 0
\(417\) −993.977 −0.116727
\(418\) 0 0
\(419\) −15010.8 −1.75018 −0.875090 0.483959i \(-0.839198\pi\)
−0.875090 + 0.483959i \(0.839198\pi\)
\(420\) 0 0
\(421\) 6873.68 0.795731 0.397865 0.917444i \(-0.369751\pi\)
0.397865 + 0.917444i \(0.369751\pi\)
\(422\) 0 0
\(423\) −8128.67 −0.934348
\(424\) 0 0
\(425\) −342.168 −0.0390532
\(426\) 0 0
\(427\) −11685.6 −1.32437
\(428\) 0 0
\(429\) 2296.21 0.258420
\(430\) 0 0
\(431\) 14365.1 1.60544 0.802719 0.596357i \(-0.203386\pi\)
0.802719 + 0.596357i \(0.203386\pi\)
\(432\) 0 0
\(433\) 9970.97 1.10664 0.553319 0.832970i \(-0.313361\pi\)
0.553319 + 0.832970i \(0.313361\pi\)
\(434\) 0 0
\(435\) 122.979 0.0135549
\(436\) 0 0
\(437\) −2419.64 −0.264868
\(438\) 0 0
\(439\) 1278.00 0.138943 0.0694713 0.997584i \(-0.477869\pi\)
0.0694713 + 0.997584i \(0.477869\pi\)
\(440\) 0 0
\(441\) −11728.3 −1.26642
\(442\) 0 0
\(443\) −11527.2 −1.23628 −0.618142 0.786066i \(-0.712114\pi\)
−0.618142 + 0.786066i \(0.712114\pi\)
\(444\) 0 0
\(445\) 65.7562 0.00700481
\(446\) 0 0
\(447\) 1814.53 0.192001
\(448\) 0 0
\(449\) −12869.5 −1.35267 −0.676334 0.736595i \(-0.736432\pi\)
−0.676334 + 0.736595i \(0.736432\pi\)
\(450\) 0 0
\(451\) −32715.7 −3.41579
\(452\) 0 0
\(453\) 2224.91 0.230763
\(454\) 0 0
\(455\) 5454.39 0.561991
\(456\) 0 0
\(457\) −3157.97 −0.323246 −0.161623 0.986853i \(-0.551673\pi\)
−0.161623 + 0.986853i \(0.551673\pi\)
\(458\) 0 0
\(459\) 618.487 0.0628944
\(460\) 0 0
\(461\) 9396.45 0.949320 0.474660 0.880169i \(-0.342571\pi\)
0.474660 + 0.880169i \(0.342571\pi\)
\(462\) 0 0
\(463\) −5949.10 −0.597145 −0.298572 0.954387i \(-0.596510\pi\)
−0.298572 + 0.954387i \(0.596510\pi\)
\(464\) 0 0
\(465\) −1083.59 −0.108065
\(466\) 0 0
\(467\) 19451.3 1.92741 0.963704 0.266975i \(-0.0860240\pi\)
0.963704 + 0.266975i \(0.0860240\pi\)
\(468\) 0 0
\(469\) −8313.66 −0.818527
\(470\) 0 0
\(471\) 2332.64 0.228201
\(472\) 0 0
\(473\) −30538.9 −2.96867
\(474\) 0 0
\(475\) −541.123 −0.0522703
\(476\) 0 0
\(477\) 13076.9 1.25524
\(478\) 0 0
\(479\) 940.447 0.0897080 0.0448540 0.998994i \(-0.485718\pi\)
0.0448540 + 0.998994i \(0.485718\pi\)
\(480\) 0 0
\(481\) 7306.49 0.692614
\(482\) 0 0
\(483\) 2663.60 0.250928
\(484\) 0 0
\(485\) −2468.15 −0.231078
\(486\) 0 0
\(487\) −20060.6 −1.86660 −0.933300 0.359098i \(-0.883084\pi\)
−0.933300 + 0.359098i \(0.883084\pi\)
\(488\) 0 0
\(489\) 1872.21 0.173138
\(490\) 0 0
\(491\) 8069.26 0.741672 0.370836 0.928698i \(-0.379071\pi\)
0.370836 + 0.928698i \(0.379071\pi\)
\(492\) 0 0
\(493\) 396.915 0.0362600
\(494\) 0 0
\(495\) −9162.07 −0.831928
\(496\) 0 0
\(497\) −12321.8 −1.11209
\(498\) 0 0
\(499\) −6221.99 −0.558186 −0.279093 0.960264i \(-0.590034\pi\)
−0.279093 + 0.960264i \(0.590034\pi\)
\(500\) 0 0
\(501\) 213.994 0.0190829
\(502\) 0 0
\(503\) −19034.6 −1.68729 −0.843647 0.536898i \(-0.819596\pi\)
−0.843647 + 0.536898i \(0.819596\pi\)
\(504\) 0 0
\(505\) 5937.26 0.523178
\(506\) 0 0
\(507\) −584.578 −0.0512072
\(508\) 0 0
\(509\) 18205.3 1.58534 0.792669 0.609652i \(-0.208691\pi\)
0.792669 + 0.609652i \(0.208691\pi\)
\(510\) 0 0
\(511\) −586.239 −0.0507509
\(512\) 0 0
\(513\) 978.108 0.0841803
\(514\) 0 0
\(515\) −5244.57 −0.448744
\(516\) 0 0
\(517\) −21566.0 −1.83457
\(518\) 0 0
\(519\) 3.82888 0.000323832 0
\(520\) 0 0
\(521\) 11929.0 1.00311 0.501553 0.865127i \(-0.332762\pi\)
0.501553 + 0.865127i \(0.332762\pi\)
\(522\) 0 0
\(523\) −8069.89 −0.674707 −0.337353 0.941378i \(-0.609532\pi\)
−0.337353 + 0.941378i \(0.609532\pi\)
\(524\) 0 0
\(525\) 595.681 0.0495194
\(526\) 0 0
\(527\) −3497.31 −0.289080
\(528\) 0 0
\(529\) 329.583 0.0270882
\(530\) 0 0
\(531\) −23333.0 −1.90690
\(532\) 0 0
\(533\) −18219.4 −1.48062
\(534\) 0 0
\(535\) 6642.00 0.536745
\(536\) 0 0
\(537\) −2881.74 −0.231576
\(538\) 0 0
\(539\) −31116.0 −2.48657
\(540\) 0 0
\(541\) 7077.69 0.562465 0.281232 0.959640i \(-0.409257\pi\)
0.281232 + 0.959640i \(0.409257\pi\)
\(542\) 0 0
\(543\) 2060.21 0.162822
\(544\) 0 0
\(545\) −11087.7 −0.871460
\(546\) 0 0
\(547\) −13642.5 −1.06639 −0.533193 0.845994i \(-0.679008\pi\)
−0.533193 + 0.845994i \(0.679008\pi\)
\(548\) 0 0
\(549\) 10931.4 0.849798
\(550\) 0 0
\(551\) 627.702 0.0485318
\(552\) 0 0
\(553\) 4971.04 0.382261
\(554\) 0 0
\(555\) 797.951 0.0610291
\(556\) 0 0
\(557\) 2306.16 0.175431 0.0877156 0.996146i \(-0.472043\pi\)
0.0877156 + 0.996146i \(0.472043\pi\)
\(558\) 0 0
\(559\) −17007.1 −1.28680
\(560\) 0 0
\(561\) 809.371 0.0609121
\(562\) 0 0
\(563\) 13007.8 0.973738 0.486869 0.873475i \(-0.338139\pi\)
0.486869 + 0.873475i \(0.338139\pi\)
\(564\) 0 0
\(565\) 2469.45 0.183877
\(566\) 0 0
\(567\) 18858.1 1.39677
\(568\) 0 0
\(569\) −10975.6 −0.808651 −0.404326 0.914615i \(-0.632494\pi\)
−0.404326 + 0.914615i \(0.632494\pi\)
\(570\) 0 0
\(571\) 25367.0 1.85915 0.929574 0.368634i \(-0.120175\pi\)
0.929574 + 0.368634i \(0.120175\pi\)
\(572\) 0 0
\(573\) −3610.16 −0.263205
\(574\) 0 0
\(575\) 2794.70 0.202691
\(576\) 0 0
\(577\) −18004.5 −1.29902 −0.649512 0.760351i \(-0.725027\pi\)
−0.649512 + 0.760351i \(0.725027\pi\)
\(578\) 0 0
\(579\) 2530.75 0.181649
\(580\) 0 0
\(581\) 19937.1 1.42364
\(582\) 0 0
\(583\) 34694.0 2.46463
\(584\) 0 0
\(585\) −5102.35 −0.360609
\(586\) 0 0
\(587\) 16433.8 1.15553 0.577763 0.816205i \(-0.303926\pi\)
0.577763 + 0.816205i \(0.303926\pi\)
\(588\) 0 0
\(589\) −5530.83 −0.386916
\(590\) 0 0
\(591\) −3147.60 −0.219078
\(592\) 0 0
\(593\) −3323.36 −0.230141 −0.115071 0.993357i \(-0.536709\pi\)
−0.115071 + 0.993357i \(0.536709\pi\)
\(594\) 0 0
\(595\) 1922.57 0.132467
\(596\) 0 0
\(597\) 1186.85 0.0813647
\(598\) 0 0
\(599\) 16193.6 1.10459 0.552296 0.833648i \(-0.313752\pi\)
0.552296 + 0.833648i \(0.313752\pi\)
\(600\) 0 0
\(601\) 17580.1 1.19319 0.596594 0.802543i \(-0.296520\pi\)
0.596594 + 0.802543i \(0.296520\pi\)
\(602\) 0 0
\(603\) 7777.07 0.525219
\(604\) 0 0
\(605\) −17652.7 −1.18625
\(606\) 0 0
\(607\) −7866.77 −0.526034 −0.263017 0.964791i \(-0.584717\pi\)
−0.263017 + 0.964791i \(0.584717\pi\)
\(608\) 0 0
\(609\) −690.990 −0.0459776
\(610\) 0 0
\(611\) −12010.1 −0.795215
\(612\) 0 0
\(613\) 2110.21 0.139038 0.0695191 0.997581i \(-0.477854\pi\)
0.0695191 + 0.997581i \(0.477854\pi\)
\(614\) 0 0
\(615\) −1989.76 −0.130463
\(616\) 0 0
\(617\) −1700.56 −0.110959 −0.0554796 0.998460i \(-0.517669\pi\)
−0.0554796 + 0.998460i \(0.517669\pi\)
\(618\) 0 0
\(619\) −5302.18 −0.344285 −0.172143 0.985072i \(-0.555069\pi\)
−0.172143 + 0.985072i \(0.555069\pi\)
\(620\) 0 0
\(621\) −5051.57 −0.326429
\(622\) 0 0
\(623\) −369.470 −0.0237600
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 1279.98 0.0815272
\(628\) 0 0
\(629\) 2575.40 0.163256
\(630\) 0 0
\(631\) −7741.34 −0.488396 −0.244198 0.969725i \(-0.578525\pi\)
−0.244198 + 0.969725i \(0.578525\pi\)
\(632\) 0 0
\(633\) −3660.33 −0.229834
\(634\) 0 0
\(635\) 11757.8 0.734792
\(636\) 0 0
\(637\) −17328.5 −1.07783
\(638\) 0 0
\(639\) 11526.5 0.713586
\(640\) 0 0
\(641\) 7562.73 0.466006 0.233003 0.972476i \(-0.425145\pi\)
0.233003 + 0.972476i \(0.425145\pi\)
\(642\) 0 0
\(643\) 14758.0 0.905130 0.452565 0.891731i \(-0.350509\pi\)
0.452565 + 0.891731i \(0.350509\pi\)
\(644\) 0 0
\(645\) −1857.37 −0.113386
\(646\) 0 0
\(647\) 8945.49 0.543560 0.271780 0.962359i \(-0.412388\pi\)
0.271780 + 0.962359i \(0.412388\pi\)
\(648\) 0 0
\(649\) −61904.2 −3.74415
\(650\) 0 0
\(651\) 6088.47 0.366553
\(652\) 0 0
\(653\) −7162.10 −0.429211 −0.214605 0.976701i \(-0.568847\pi\)
−0.214605 + 0.976701i \(0.568847\pi\)
\(654\) 0 0
\(655\) −8391.67 −0.500595
\(656\) 0 0
\(657\) 548.401 0.0325650
\(658\) 0 0
\(659\) −27324.8 −1.61521 −0.807604 0.589726i \(-0.799236\pi\)
−0.807604 + 0.589726i \(0.799236\pi\)
\(660\) 0 0
\(661\) −27268.2 −1.60455 −0.802276 0.596954i \(-0.796378\pi\)
−0.802276 + 0.596954i \(0.796378\pi\)
\(662\) 0 0
\(663\) 450.739 0.0264031
\(664\) 0 0
\(665\) 3040.45 0.177299
\(666\) 0 0
\(667\) −3241.86 −0.188194
\(668\) 0 0
\(669\) 3283.77 0.189773
\(670\) 0 0
\(671\) 29001.8 1.66856
\(672\) 0 0
\(673\) 23189.7 1.32823 0.664115 0.747631i \(-0.268809\pi\)
0.664115 + 0.747631i \(0.268809\pi\)
\(674\) 0 0
\(675\) −1129.72 −0.0644192
\(676\) 0 0
\(677\) 13786.6 0.782659 0.391330 0.920251i \(-0.372015\pi\)
0.391330 + 0.920251i \(0.372015\pi\)
\(678\) 0 0
\(679\) 13868.0 0.783809
\(680\) 0 0
\(681\) −1721.38 −0.0968626
\(682\) 0 0
\(683\) −4434.99 −0.248463 −0.124231 0.992253i \(-0.539646\pi\)
−0.124231 + 0.992253i \(0.539646\pi\)
\(684\) 0 0
\(685\) −6100.60 −0.340280
\(686\) 0 0
\(687\) 4768.83 0.264836
\(688\) 0 0
\(689\) 19321.1 1.06832
\(690\) 0 0
\(691\) 23981.2 1.32024 0.660122 0.751159i \(-0.270505\pi\)
0.660122 + 0.751159i \(0.270505\pi\)
\(692\) 0 0
\(693\) 51479.7 2.82187
\(694\) 0 0
\(695\) 5859.83 0.319822
\(696\) 0 0
\(697\) −6421.99 −0.348996
\(698\) 0 0
\(699\) −3586.78 −0.194084
\(700\) 0 0
\(701\) −27081.4 −1.45913 −0.729566 0.683911i \(-0.760278\pi\)
−0.729566 + 0.683911i \(0.760278\pi\)
\(702\) 0 0
\(703\) 4072.87 0.218508
\(704\) 0 0
\(705\) −1311.64 −0.0700697
\(706\) 0 0
\(707\) −33360.2 −1.77460
\(708\) 0 0
\(709\) −14637.2 −0.775334 −0.387667 0.921799i \(-0.626719\pi\)
−0.387667 + 0.921799i \(0.626719\pi\)
\(710\) 0 0
\(711\) −4650.19 −0.245282
\(712\) 0 0
\(713\) 28564.7 1.50036
\(714\) 0 0
\(715\) −13536.9 −0.708046
\(716\) 0 0
\(717\) −800.852 −0.0417132
\(718\) 0 0
\(719\) 12770.9 0.662413 0.331206 0.943558i \(-0.392544\pi\)
0.331206 + 0.943558i \(0.392544\pi\)
\(720\) 0 0
\(721\) 29468.1 1.52212
\(722\) 0 0
\(723\) 1092.59 0.0562019
\(724\) 0 0
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) 11908.3 0.607504 0.303752 0.952751i \(-0.401761\pi\)
0.303752 + 0.952751i \(0.401761\pi\)
\(728\) 0 0
\(729\) −16606.2 −0.843681
\(730\) 0 0
\(731\) −5994.68 −0.303312
\(732\) 0 0
\(733\) −11483.9 −0.578674 −0.289337 0.957227i \(-0.593435\pi\)
−0.289337 + 0.957227i \(0.593435\pi\)
\(734\) 0 0
\(735\) −1892.47 −0.0949725
\(736\) 0 0
\(737\) 20633.2 1.03125
\(738\) 0 0
\(739\) 16051.6 0.799009 0.399504 0.916731i \(-0.369182\pi\)
0.399504 + 0.916731i \(0.369182\pi\)
\(740\) 0 0
\(741\) 712.821 0.0353389
\(742\) 0 0
\(743\) −12941.8 −0.639015 −0.319508 0.947584i \(-0.603517\pi\)
−0.319508 + 0.947584i \(0.603517\pi\)
\(744\) 0 0
\(745\) −10697.3 −0.526064
\(746\) 0 0
\(747\) −18650.3 −0.913494
\(748\) 0 0
\(749\) −37320.0 −1.82062
\(750\) 0 0
\(751\) −6968.78 −0.338608 −0.169304 0.985564i \(-0.554152\pi\)
−0.169304 + 0.985564i \(0.554152\pi\)
\(752\) 0 0
\(753\) 3827.98 0.185258
\(754\) 0 0
\(755\) −13116.6 −0.632268
\(756\) 0 0
\(757\) −4699.25 −0.225624 −0.112812 0.993616i \(-0.535986\pi\)
−0.112812 + 0.993616i \(0.535986\pi\)
\(758\) 0 0
\(759\) −6610.64 −0.316141
\(760\) 0 0
\(761\) 18565.6 0.884366 0.442183 0.896925i \(-0.354204\pi\)
0.442183 + 0.896925i \(0.354204\pi\)
\(762\) 0 0
\(763\) 62299.5 2.95596
\(764\) 0 0
\(765\) −1798.48 −0.0849991
\(766\) 0 0
\(767\) −34474.4 −1.62294
\(768\) 0 0
\(769\) 15732.3 0.737738 0.368869 0.929481i \(-0.379745\pi\)
0.368869 + 0.929481i \(0.379745\pi\)
\(770\) 0 0
\(771\) −1494.55 −0.0698119
\(772\) 0 0
\(773\) 11610.6 0.540240 0.270120 0.962827i \(-0.412937\pi\)
0.270120 + 0.962827i \(0.412937\pi\)
\(774\) 0 0
\(775\) 6388.14 0.296089
\(776\) 0 0
\(777\) −4483.52 −0.207008
\(778\) 0 0
\(779\) −10156.1 −0.467110
\(780\) 0 0
\(781\) 30580.7 1.40111
\(782\) 0 0
\(783\) 1310.48 0.0598117
\(784\) 0 0
\(785\) −13751.7 −0.625248
\(786\) 0 0
\(787\) −28362.6 −1.28465 −0.642325 0.766433i \(-0.722030\pi\)
−0.642325 + 0.766433i \(0.722030\pi\)
\(788\) 0 0
\(789\) 189.558 0.00855316
\(790\) 0 0
\(791\) −13875.3 −0.623705
\(792\) 0 0
\(793\) 16151.1 0.723255
\(794\) 0 0
\(795\) 2110.08 0.0941343
\(796\) 0 0
\(797\) −4018.42 −0.178594 −0.0892971 0.996005i \(-0.528462\pi\)
−0.0892971 + 0.996005i \(0.528462\pi\)
\(798\) 0 0
\(799\) −4233.34 −0.187440
\(800\) 0 0
\(801\) 345.623 0.0152459
\(802\) 0 0
\(803\) 1454.95 0.0639404
\(804\) 0 0
\(805\) −15702.8 −0.687519
\(806\) 0 0
\(807\) −6695.03 −0.292040
\(808\) 0 0
\(809\) −35737.0 −1.55308 −0.776542 0.630065i \(-0.783028\pi\)
−0.776542 + 0.630065i \(0.783028\pi\)
\(810\) 0 0
\(811\) 7743.79 0.335291 0.167646 0.985847i \(-0.446384\pi\)
0.167646 + 0.985847i \(0.446384\pi\)
\(812\) 0 0
\(813\) 4365.15 0.188306
\(814\) 0 0
\(815\) −11037.3 −0.474381
\(816\) 0 0
\(817\) −9480.30 −0.405965
\(818\) 0 0
\(819\) 28669.0 1.22317
\(820\) 0 0
\(821\) −11089.2 −0.471396 −0.235698 0.971826i \(-0.575738\pi\)
−0.235698 + 0.971826i \(0.575738\pi\)
\(822\) 0 0
\(823\) 3498.71 0.148186 0.0740932 0.997251i \(-0.476394\pi\)
0.0740932 + 0.997251i \(0.476394\pi\)
\(824\) 0 0
\(825\) −1478.39 −0.0623889
\(826\) 0 0
\(827\) −5140.31 −0.216138 −0.108069 0.994143i \(-0.534467\pi\)
−0.108069 + 0.994143i \(0.534467\pi\)
\(828\) 0 0
\(829\) 3324.47 0.139281 0.0696403 0.997572i \(-0.477815\pi\)
0.0696403 + 0.997572i \(0.477815\pi\)
\(830\) 0 0
\(831\) −0.423970 −1.76984e−5 0
\(832\) 0 0
\(833\) −6107.98 −0.254056
\(834\) 0 0
\(835\) −1261.57 −0.0522854
\(836\) 0 0
\(837\) −11546.9 −0.476845
\(838\) 0 0
\(839\) −18892.5 −0.777405 −0.388703 0.921363i \(-0.627077\pi\)
−0.388703 + 0.921363i \(0.627077\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) −1928.64 −0.0787969
\(844\) 0 0
\(845\) 3446.29 0.140303
\(846\) 0 0
\(847\) 99186.7 4.02373
\(848\) 0 0
\(849\) 5691.65 0.230079
\(850\) 0 0
\(851\) −21034.9 −0.847318
\(852\) 0 0
\(853\) 14256.5 0.572253 0.286126 0.958192i \(-0.407632\pi\)
0.286126 + 0.958192i \(0.407632\pi\)
\(854\) 0 0
\(855\) −2844.21 −0.113766
\(856\) 0 0
\(857\) 29636.4 1.18128 0.590642 0.806934i \(-0.298874\pi\)
0.590642 + 0.806934i \(0.298874\pi\)
\(858\) 0 0
\(859\) −12986.6 −0.515828 −0.257914 0.966168i \(-0.583035\pi\)
−0.257914 + 0.966168i \(0.583035\pi\)
\(860\) 0 0
\(861\) 11180.0 0.442526
\(862\) 0 0
\(863\) 8960.37 0.353435 0.176718 0.984262i \(-0.443452\pi\)
0.176718 + 0.984262i \(0.443452\pi\)
\(864\) 0 0
\(865\) −22.5725 −0.000887270 0
\(866\) 0 0
\(867\) −4007.97 −0.156999
\(868\) 0 0
\(869\) −12337.3 −0.481606
\(870\) 0 0
\(871\) 11490.6 0.447009
\(872\) 0 0
\(873\) −12972.9 −0.502941
\(874\) 0 0
\(875\) −3511.74 −0.135678
\(876\) 0 0
\(877\) 13151.6 0.506382 0.253191 0.967416i \(-0.418520\pi\)
0.253191 + 0.967416i \(0.418520\pi\)
\(878\) 0 0
\(879\) 6993.87 0.268370
\(880\) 0 0
\(881\) 38097.3 1.45690 0.728450 0.685099i \(-0.240241\pi\)
0.728450 + 0.685099i \(0.240241\pi\)
\(882\) 0 0
\(883\) 22274.0 0.848903 0.424452 0.905451i \(-0.360467\pi\)
0.424452 + 0.905451i \(0.360467\pi\)
\(884\) 0 0
\(885\) −3764.99 −0.143004
\(886\) 0 0
\(887\) −15504.2 −0.586898 −0.293449 0.955975i \(-0.594803\pi\)
−0.293449 + 0.955975i \(0.594803\pi\)
\(888\) 0 0
\(889\) −66064.4 −2.49238
\(890\) 0 0
\(891\) −46802.9 −1.75977
\(892\) 0 0
\(893\) −6694.81 −0.250877
\(894\) 0 0
\(895\) 16988.8 0.634496
\(896\) 0 0
\(897\) −3681.46 −0.137035
\(898\) 0 0
\(899\) −7410.24 −0.274911
\(900\) 0 0
\(901\) 6810.31 0.251814
\(902\) 0 0
\(903\) 10436.1 0.384599
\(904\) 0 0
\(905\) −12145.7 −0.446116
\(906\) 0 0
\(907\) 52847.6 1.93470 0.967352 0.253436i \(-0.0815607\pi\)
0.967352 + 0.253436i \(0.0815607\pi\)
\(908\) 0 0
\(909\) 31207.1 1.13869
\(910\) 0 0
\(911\) −41917.5 −1.52447 −0.762234 0.647302i \(-0.775897\pi\)
−0.762234 + 0.647302i \(0.775897\pi\)
\(912\) 0 0
\(913\) −49480.8 −1.79362
\(914\) 0 0
\(915\) 1763.88 0.0637290
\(916\) 0 0
\(917\) 47151.0 1.69800
\(918\) 0 0
\(919\) −34978.2 −1.25552 −0.627760 0.778407i \(-0.716028\pi\)
−0.627760 + 0.778407i \(0.716028\pi\)
\(920\) 0 0
\(921\) −2839.87 −0.101604
\(922\) 0 0
\(923\) 17030.4 0.607326
\(924\) 0 0
\(925\) −4704.19 −0.167214
\(926\) 0 0
\(927\) −27566.2 −0.976690
\(928\) 0 0
\(929\) 16263.0 0.574350 0.287175 0.957878i \(-0.407284\pi\)
0.287175 + 0.957878i \(0.407284\pi\)
\(930\) 0 0
\(931\) −9659.47 −0.340039
\(932\) 0 0
\(933\) −2699.61 −0.0947279
\(934\) 0 0
\(935\) −4771.52 −0.166893
\(936\) 0 0
\(937\) −20933.5 −0.729846 −0.364923 0.931038i \(-0.618905\pi\)
−0.364923 + 0.931038i \(0.618905\pi\)
\(938\) 0 0
\(939\) 165.048 0.00573604
\(940\) 0 0
\(941\) 3025.35 0.104807 0.0524036 0.998626i \(-0.483312\pi\)
0.0524036 + 0.998626i \(0.483312\pi\)
\(942\) 0 0
\(943\) 52452.4 1.81133
\(944\) 0 0
\(945\) 6347.66 0.218507
\(946\) 0 0
\(947\) 13738.1 0.471414 0.235707 0.971824i \(-0.424259\pi\)
0.235707 + 0.971824i \(0.424259\pi\)
\(948\) 0 0
\(949\) 810.262 0.0277157
\(950\) 0 0
\(951\) 6658.43 0.227039
\(952\) 0 0
\(953\) 38152.7 1.29684 0.648420 0.761283i \(-0.275430\pi\)
0.648420 + 0.761283i \(0.275430\pi\)
\(954\) 0 0
\(955\) 21283.1 0.721157
\(956\) 0 0
\(957\) 1714.93 0.0579266
\(958\) 0 0
\(959\) 34278.0 1.15422
\(960\) 0 0
\(961\) 35502.3 1.19171
\(962\) 0 0
\(963\) 34911.3 1.16822
\(964\) 0 0
\(965\) −14919.6 −0.497700
\(966\) 0 0
\(967\) 36348.2 1.20877 0.604385 0.796693i \(-0.293419\pi\)
0.604385 + 0.796693i \(0.293419\pi\)
\(968\) 0 0
\(969\) 251.256 0.00832973
\(970\) 0 0
\(971\) 50375.8 1.66492 0.832460 0.554085i \(-0.186932\pi\)
0.832460 + 0.554085i \(0.186932\pi\)
\(972\) 0 0
\(973\) −32925.2 −1.08482
\(974\) 0 0
\(975\) −823.313 −0.0270432
\(976\) 0 0
\(977\) −28397.1 −0.929890 −0.464945 0.885340i \(-0.653926\pi\)
−0.464945 + 0.885340i \(0.653926\pi\)
\(978\) 0 0
\(979\) 916.966 0.0299350
\(980\) 0 0
\(981\) −58278.5 −1.89673
\(982\) 0 0
\(983\) 42348.9 1.37408 0.687039 0.726620i \(-0.258910\pi\)
0.687039 + 0.726620i \(0.258910\pi\)
\(984\) 0 0
\(985\) 18556.2 0.600253
\(986\) 0 0
\(987\) 7369.82 0.237674
\(988\) 0 0
\(989\) 48962.3 1.57423
\(990\) 0 0
\(991\) −14053.9 −0.450490 −0.225245 0.974302i \(-0.572318\pi\)
−0.225245 + 0.974302i \(0.572318\pi\)
\(992\) 0 0
\(993\) 9065.46 0.289712
\(994\) 0 0
\(995\) −6996.91 −0.222932
\(996\) 0 0
\(997\) −26552.1 −0.843442 −0.421721 0.906726i \(-0.638574\pi\)
−0.421721 + 0.906726i \(0.638574\pi\)
\(998\) 0 0
\(999\) 8503.07 0.269295
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.4.a.g.1.7 11
4.3 odd 2 2320.4.a.bb.1.5 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.4.a.g.1.7 11 1.1 even 1 trivial
2320.4.a.bb.1.5 11 4.3 odd 2